
Mastodon

Jean-Yves Tinevez

Apr 24, 2024

A. USING MASTODON

1 Table of content. 3
1.1 Getting started with Mastodon. Automated tracking. 3
1.2 Manually editing tracks in Mastodon. TrackScheme. 15
1.3 Inspecting large datasets. 28
1.4 Numerical features and tags. The table view. 34
1.5 Semi-automated tracking. 51
1.6 The selection creator. 57
1.7 Scripting Mastodon in Fiji. 67
1.8 Moving around in the BDV views. 78
1.9 Editing spots and links in the BDV views. 79
1.10 Moving around in the TrackScheme views. 80
1.11 Editing spots and links in the TrackScheme views. 80
1.12 Shortcuts for the table views. 81
1.13 Navigation through lineages in BDV and TrackScheme views. 81
1.14 Setting the selection. 82
1.15 Existing plugins . 82
1.16 Mastodon Deep Lineage - a collection of plugins to analyse lineages of tracked objects in Mastodon . 83
1.17 Mastodon data structures. 92
1.18 Creating custom plugins in Mastodon. 95
1.19 Custom simple numerical features in Mastodon. 105
1.20 Mastodon numerical features. 117
1.21 The graph data structure of Mastodon. 122
1.22 Containment in Convex Polytopes using k-D trees. 127
1.23 Scripting functions . 128

2 Documentation tools. 145

Index 147

i

ii

Mastodon

Mastodon is a large-scale tracking and track-editing framework for large, multi-view images, such as the ones that are
typically generated in the domain Development Biology or Stem-Cell Biology or Cell Biology.

Why using Mastodon?

Modern microscopy technologies such as light sheet microscopy allows live sample in toto 3D imaging with high spatial
and temporal resolution. Such images will be 3D over time, possibly multi-channels and multi-view. Computational
analysis of these images promises new insights in cellular, developmental and stem cells biology. However, a single
image can amount to several terabytes, and in turn, the automated or semi-automated analysis of these large images
can generate a vast amount of annotations. The challenges of big data are then met twice: first by dealing with a very
large image, and second with generating large annotations from this image. They will make interacting and analyzing
the data especially difficult.

Mastodon is our effort to provide a tool that can harness these challenges.

This pages centralize the user and developer documentation for Mastodon. It is divided in four parts, that group sections
by interest.

A. The first part, Using mastodon contains tutorials, aimed at end-users and focused on cell tracking. They are meant
to guide users with the Mastodon software and cover three applications of cell tracking in Mastodon:

• automated cell or particle tracking;

• manual curation and correction of tracking results;

• manual and semi-automatic tracking.

This also where we introduce all the user-oriented features, such as numerical features, tags, navigation facilities, data
export etc. If you are new to Mastodon, it is best starting with this part, and reading the tutorial in order.

B. The second part contains tables that summarize the main keyboard shortcuts of Mastodon. They are put in a separate
section to facilitate browsing to them quickly.

C. The third path documents the various plugins, extensions and miscellaneous functionality of Mastodon. Some of the
features documented there are already shipped with Mastodon, others are distributed via optional update sites. They
are all based on the extension mechanisms described in the next part.

D. The fourth part is aimed at developers, that want to extend Mastodon. Mastodon, like TrackMate, is a software
platform meant to be extended by you so that new features and algorithms can be added to it in a relatively simpler
manner. This part detail the plugin interface of Mastodon and the discovery mechanism.

E. The last part is made of technical information that serve as a reference for the specificities of algorithms and features
currently implemented in Mastodon.

A. USING MASTODON 1

https://imagej.net/plugins/trackmate/

Mastodon

2 A. USING MASTODON

CHAPTER

ONE

TABLE OF CONTENT.

1.1 Getting started with Mastodon. Automated tracking.

This tutorial is the starting point for new Mastodon users. It will walk you through basic operations in Mastodon,
opening a dataset and creating a Mastodon project, automatically detect cells and link them, and show you how to use
the main views of Mastodon. We don’t go into details, and will revisit the features we survey here later.

1.1.1 The image data.

Exporting your image to file format.

Mastodon uses (BDV) files as input images. You need to prepare your images so that they can be opened in the
BigDataViewer.

BDV files are used more and more by several software projects in the Fiji ecosystem and beyond. This tutorial focuses
on Mastodon not on BDV, however we will take a very small detour to explain what makes it fit and how to turn your
images into this format. If you know already, you can skip this part, because we simply recapitulate what is being
explained in the original BDV publication.

For this tutorial we will use a ready-made dataset, in the adequate format, but it is a good idea to know how to export
or create an image in such a format. We lazily rely on the excellent documentation and point directly to the instructions
to prepare your images, depending on whether

• they are opened as an ImageJ stack, or

• they come from a SPIM processing pipeline, or

• they come from the BigStitcher plugin, etc.

Once you have prepared your images for opening in the , you should have a .xml file and a possibly very large .h5 file
on your computer. The .xml file must be the output of the data preparation. It should start with the following lines:

<?xml version="1.0" encoding="UTF-8"?>
<SpimData version="0.2">
<BasePath type="relative">.</BasePath>
<SequenceDescription>
<ImageLoader format="bdv.hdf5">
<hdf5 type="relative">datasethdf5.h5</hdf5>

...

3

https://imagej.net/plugins/bdv/
https://www.nature.com/articles/nmeth.3392
https://imagej.net/plugins/bdv/#exporting-from-imagej-stacks
https://imagej.net/plugins/bdv/#integration-with-fijis-spimage-processing-tools
https://imagej.net/plugins/bigstitcher/index

Mastodon

Key advantages of the file format.

The BDV file format solves mainly two challenges in image visualization and analysis, that arise with modern mi-
croscopy, namely:

• Modern microscopes can generate images that are very large in size. Much larger that what can be fitted in
RAM, even with the increase in computer power. It is now common to find single movies acquired on SPIM
microscopes that are several TBs in size. Computers with several TBs of RAM are not so common.

• Multiple views of the same sample can be acquired, and they need to be visualized in the same viewer. The
first use case is also the multi-view images generated by SPIM microscopes, but we can also think of correlative
light-electron microscopy.

If we focus on the first challenge, you see that we need to stream the image data directly from the disk, instead of fully
loading it into RAM. But at the same time, we need a tool that allows for interactive browsing of the data. The view
must be responsive to the user input, and not block when it has to load the data from the file. The BDV file format offers
a clever file format design that does this, coupled to a specialized viewer. The image data are stored in small chunks
corresponding to a neighborhood. As the viewer shows a slice through the image, the required chunks are loaded on
demand and cached. All the chunks are organized in a HDF5 file, which is like a file-system in a file, and accessing
single chunks is fast with current computer hardware. On top of this, the image is also stored as a multi-scale pyramid,
to speed-up zooming and unzooming. The BDV display component exploits this file format in a clever way, and ensures
that the view still answers to user interactions (mouse pan, zoom, clicks) even if the chunks are not fully loaded.

There are several implementations of this strategy, for instance in Imaris and with the new file format N5 proposed by
the Saalfeld lab. Some of them are inter-compatible. We will pick the BDV file format all along this document. The
has proved its value and impact on our field. For instance our previous work on cell lineaging in large images, MaMuT,
is based on BDV.

The tutorial dataset.

Mastodon was created specially because we needed to harness very big, multi-view images. We wanted to generate
comprehensive lineages and follow a large number of cells over a very long time. This accumulation of inflated words
is tied to the very large - in objective disk space occupation - images we deal with using modern microscopy tools. Such
datasets might not be optimal for a first contact with Mastodon. So just for this tutorial we will use a smaller dataset.
It is a small region cut into a movie following the development of a drosophila embryo, acquired by William Lemon
in Patrick Keller lab (HHMI, Janelia Farm). This was created from the example dataset released with the TGMM

software. You can find it on Zenodo here:

It is a zip file that contains 3 files:

14M datasethdf5.h5
2.7K datasethdf5.settings.xml
8.7K datasethdf5.xml

The .h5 file is the HDF5 file mentioned above, that contains the image data itself. The datasethdf5.xml is a text
file following the XML convention, specific to the BDV file format, that contains information about the the image data
and metadata. When we want to open a BDV file, we point the reader to this file. The datasethdf5.settings.xml

4 Chapter 1. Table of content.

https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://en.wikipedia.org/wiki/Pyramid_(image_processing)
https://imaris.oxinst.com/support/imaris-file-format
https://github.com/saalfeldlab/n5
https://imagej.net/plugins/mamut/
https://www.nature.com/articles/nmeth.3036
https://www.nature.com/articles/nmeth.3036
https://doi.org/10.5281/zenodo.3336346

Mastodon

is an optional file that stores user display parameters, such as channel colors, min and max display value, as well as
bookmarks in the data. We refer you to the BDV documentation about this file. Mastodon uses this settings file to store
that same information.

If you open this data in the (in Fiji in the menu), you should see something like in the figurebelow. There is about 70
cells in each of the 30 time-points, arranged in a layer at the top of the sample. The deeper part of the sample (low
Z coordinates) has some hazy, diffuse signal from which we cannot individualize cells. As time progresses, the cells
move towards the middle part and bottom (high Y coordinates) part of the image, and some of them move deeper in Z,
initiating gastrulation.

The goal of this short tutorial is to track all these cells in Mastodon.

1.1.2 Getting Mastodon.

As of today, Mastodon is available as a beta. We are still working on adding and validating features. Nonetheless the
beta has everything we need to track these cells. Also, Mastodon is independent of ImageJ or Fiji, it can operate as a
standalone software. However we currently distribute it via Fiji, because the updater and the dependency management
are so convenient. So the first thing to do is to grab Fiji, if you do not have it already.

Then launch the Fiji updater and once your Fiji is up to date, click on the Manage update site button. We will add
the Mastodon update site. You should find the Mastodon site in the list.

1.1. Getting started with Mastodon. Automated tracking. 5

https://imagej.net/plugins/bdv/#loading-and-saving-settings
https://fiji.sc/
https://imagej.net/plugins/updater
https://imagej.net/update-sites/following

Mastodon

Select it, update Fiji and restart it. After restarting, you should find the command Plugins > Mastodon at the bottom
of the Plugins menu.

1.1.3 Creating a new Mastodon project.

After launching the command, this Mastodon launcher appears.

In our case, we want to create a new project from an existing BDV file. Click on the new Mastodon project and
make sure the Browse to a BDV file pair (xml/h5 pair) option is selected. Use the Browse button to browse
to the XML file location.

6 Chapter 1. Table of content.

Mastodon

Then click the create button. You should now see the Mastodon main window, that is used to control the project.

Click on the bdv button. If a BDV window appears, everything is right.

1.1. Getting started with Mastodon. Automated tracking. 7

Mastodon

It is almost a regular BDV window and if you already know who to use it and the key bindings you should find your
marks quickly. The BDV view displays a slice of the image through arbitrary orientation. Below we give the commands
and key-bindings for navigation in a Mastodon-BDV window. They are indeed close to what is found in the standard
but some changes. Please note: You can reconfigure almost everything in Mastodon, as we will see later, including
key-bindings. In this tutorial and the next ones, the key-bindings we present are for the Default configuration. In the
BDV navigation shortcuts table you will find the key bindings to navigate through the image data.

Now you want to save the project. Go back to the main window, and click on the save as... button. This will create
a single file, called for instance drosophila_crop.mastodon file. This file is actually a zip file that contains the
tracks and links to the image data. The image data is kept separate from the Mastodon file, which allows for using it
with another software, independently. So if you want to transfer or move a full Mastodon project, you need to take the
.mastodon file and all the .xml and .h5 files from the dataset.

Next time you want to open this project, just click on the button and point the file browser to the .mastodon file. The
image data will be loaded along with the lineages.

1.1.4 Detecting cells.

We want to track automatically all the cells in this dataset, and the first step is therefore to detect them. Mastodon ships
a wizard to perform cell detection. It is very much inspired by the TrackMate GUI, and if you know this software you
will find your marks here. Also, the basic algorithms are very close to what was in TrackMate, but they have been
heavily optimized for Mastodon.

Mastodon windows have their own menus. The detection wizard can be launched from the Plugins > Tracking > De-
tection. . . menu item. You should have a window like the one depicted below:

8 Chapter 1. Table of content.

https://imagej.net/plugins/trackmate/index

Mastodon

Like for TrackMate, the automated tracking user interface uses wizards to enter parameters, select algorithms, etc. You
can navigate back and forth with the and buttons. The button will bring an independent panel where all the activity in
the wizard are logged as text.

This first panel allows for selecting the target source on which the detection will be run. Since we use the for images, a
channel or a view is stored and displayed as a source. A source can have multiple resolutions stored, as explain above,
but for the data used in this tutorial this is not the case. The sources are nicknamed ‘setups’ in this panel. They are
numbered from 0 and can be selected from the drop-down list. Below the list we try to display the metadata we could
retrieve from the file. Just pick the first and only channel, and click Next.

You can now choose to operate only on a rectangular ROI in the image. If you check the Process only a ROI button,
new controls appear in the panel, and a ROI is drawn into an open BDV view (a new one is created if one is not opened).
The ROI is painted as a wire-frame box, green for vertices that point towards the camera from the displayed slice, and
purple for vertices that points away from the camera, below the displayed slice. The intersection of the ROI box with the
displayed slice is painted with a purple semi-transparent overlay, with a white dotted line as borders. You can control
the ROI bounds with the controls in the panel, or by directly dragging the ROI corners in the BDV view. Time bounds
can also be set this way. In our case we want to segment the full image over all time-points, so leave the Process only
a ROI button unchecked.

You cannot have non-rectangular ROIs in Mastodon. Nonetheless they are super useful as is. You can for instance
combine several detection steps using different parameters in different region of your image. Or different time interval.

1.1. Getting started with Mastodon. Automated tracking. 9

Mastodon

The next panel lets you choose the detector you want to use. In Mastodon, three detectors are available. Right now, we
will use the default one, the DoG detector, which should be good enough for most cases. DoG means ‘difference-
of-Gaussians’. It is an efficient approximation of the LoG (‘Laplacian of Gaussian’) filter, and there is also a detector
in Mastodon based on the latter.

These detectors excel at finding roundish structures in the image that are bright over a dark background. The structures
must have a shape somewhat close to a sphere, but they can accommodate a lot of variability. As a rule of thumb,
if you can define rough estimate of the radius of these structures, they are eligible to be picked up by our detectors.
This also implies that in Mastodon, we cannot segment complex shapes, or object labeled by their contour (e.g. cell
membranes), or even exploit these shapes to have an accurate measurements of the volume. This is an important
limitation of Mastodon.

For now, select the DoG detector and click Next.

Here is briefly how it works. The LoG detector, and its approximation the DoG detector, is the best detector for blob-
like particles in the presence of noise (See Sage et al, 2005. It is based on applying a Laplacian of Gaussian (LoG) filter
on the image and looking for local maxima. The result is obtained by summing the second order spatial derivatives
of the gaussian- filtered image, and normalizing for scale. Local maxima in the filtered image yields spot detections.
Each detected spot is assigned a quality value, that is obtained by taking the intensity value in the LoG filtered image
at the location of the spot. So by properties of the LoG filter, this quality value is larger for :

• bright spots;

• spots which diameter is close to the specified diameter.

The DoG detector requires only two parameters: the estimated diameter of the object we want to detect, and a threshold
on the quality value, that will help separating spurious detections from real ones. The panel you are presented let you
specify these parameters, and preview the resulting detection. Try with 10 pixels for Estimated diameter and 0 for
the Quality threshold. The click on the Preview button. A preview panel should open shortly, showing detection
results on the current frame:

10 Chapter 1. Table of content.

https://ieeexplore.ieee.org/abstract/document/1495509

Mastodon

These values are close to be good but not quite. You can see that the diameter value is too small to properly grasps
the elongated shape of the cells along Z (the BDV view on the left panel above is rotated to show a YZ plane). Also
the threshold value is too low, and some spurious detections are found below the epithelium. These spots have a low
quality, that manifests as a peak at low value in the quality histogram displayed on the configuration panel. From the
shape of the histogram, we can infer that a threshold value around 100 should work. However we also need to change
the diameter parameter, which will change the range of quality values. After trial and errors, values around 15 pixels
for the diameter and 400 for the threshold seem to work.

Note that you can run the preview on any frame. You just have to move the time slider on the preview window. Once
you are happy with the parameters, click on the button. All the frames specified in the ROI (if any) will be processed.
In our case detection should conclude quickly and the following panel should appear:

We now have more than 1000 cells detected and this concludes the detection step. Click on the Finish button, and the
wizard will disappear.

1.1. Getting started with Mastodon. Automated tracking. 11

Mastodon

If you have complex images mixing several size of objects, or detection parameters that work for one part of the movie
but not for another one, you could restart a new detection now, selecting for instance other parts of the movie with the
ROI. You can do this and more, but for this kind of approach, the Advanced DoG detector offers more configuration
capabilities, that will review later.

1.1.5 Linking cells.

What we just did is the detection step. It yields one Mastodon spot per cell, but the notion of cell identity propagated
over time is missing yet. The particle linking step just does that. A particle linking or tracking algorithm accepts a
collection of spots, ordered by frames (time-points), and tries to link each spot to the next spot(s) in the next frame
or so. All the spots you can reach by starting from one spot and navigating across links build a track, and in our case
it represents one cell (or any other object) followed over time. In most cases there is one spot per frame for a track,
meaning that that a spot has at most one incoming link (spot from previous frame) and one outgoing kink (spot in next
frame). But some algorithms can accommodate e.g. dividing cells (2 outgoing links for the mother cell going to the
two daughter cells) and merging events. There is a vast literature behind tracking algorithms, and it is an active domain
of Research. A paper compares implementation and list some pros and pitfalls of many of them.

Selecting target spots for linking.

Like for the detection step, linking in Mastodon happens in a wizard. And also like for detection, the linking algorithms
currently available in Mastodon are adapted from TrackMate. Launch the wizard from the GUI, with the Plugins >
Tracking > Linking.. . menu item. The first panel you are shown lets you select what spots to include in linking:

There are two modes:

• Either you take all the spots between a start and and end frame. By default, all frames are selected.

• Either you specify you want to link only the spots that are in the selection. This mode offers a lot of flexibility
when facing complicated cases. It is best use along with the selection creator, that we will describe later in this
manual.

For now, just leave the parameters as they are, which will include all spots in the linking process, and click next. You
can now choose between several linking algorithms.

12 Chapter 1. Table of content.

https://www.nature.com/articles/nmeth.2808

Mastodon

Available linking algorithms in Mastodon.

In Mastodon, they fall mainly in two categories.

The first two LAP trackers are based on the Linear Assignment Problem (LAP) framework, first developed by
Jaqaman et al., with important differences from the original paper described elsewhere. We focused on this method for
it gives us a lot of flexibility and it can be configured easily to handle many cases. You can tune it to allow splitting
events, where a track splits in two, for instance following a cell that encounters mitosis. Merging events are handled
too in the same way. More importantly are gap-closing events, where a spot disappear for one frame (because it moves
out of focus, because detection failed, . . .) but the tracker can rescue missing detections and connect with reappearing
spots later.

In Mastodon the LAP algorithms exists in two flavors: a simple one and a not simple one. There are again the same,
but the simple ones propose fewer configuration options and a thus more concise configuration panel. In short:

• The simple one only allows to deal with gap-closing events, and prevent splitting and merging events to be
detected. Also, the costs to link two spots are computed solely based on their respective distance.

• The not simple one allows to detect any kind of event, so if you need to build tracks that are splitting or merging,
you must go for this one. If you want to forbid the detection of gap-closing events, you want to use it as well.
Also, you can alter the cost calculation to disfavor the linking of spots that have very different feature values.

The third tracker is called Linear motion Kalman linker. It can deal specifically with linear motion, or particles
moving with a roughly constant velocity. This velocity does not need to be the same for all particles. It relies on the
Kalman filter to predict the most probable position of a particle undergoing (quasi) constant velocity movement.

How to pick the right linking algorithm?

The right choice of a particle linking algorithm is conditioned by the expected motion of the object you track. As a rule
of thumb, you can make a decision following these simple rules:

• If the objects you track are transported by an active process and have a motion for which the velocity vector
changes slowly, then pick the Linear motion Kalman linker.

• If the object motion is random (like in Brownian motion) or unknown, pick on the LAP linker. If the objects you
track do not divide, nor merge, pick the Simple LAP linker.

• If the objects divide or merge, or if you want to specify linking costs based on numerical features (like spot mean
intensity), then pick the LAP linker.

In our case, we need the Simple LAP linker. Select it and click Next.

Running the Simple LAP linker.

This linker only requires the specification of three parameters.

The first one is the Max linking distance during frame-to-frame linking. This is the distance beyond which linking
a spot to another one in the next frame will be forbidden. For instance, if you know that your objects move by at most
5 µm from one frame to the next, pick a value slightly larger, for instance 6 µm. Distances are expressed in whatever
physical units the BDV dataset specified. In our case it is pixels.

1.1. Getting started with Mastodon. Automated tracking. 13

https://www.nature.com/articles/nmeth.1237
https://imagej.net/plugins/trackmate/algorithms#main-differences-with-the-jaqaman-paper
https://en.wikipedia.org/wiki/Kalman_filter

Mastodon

In practical cases, it can happen that the detection step might miss an object in some frames, then detect again later.
These gaps will result in generating several small tracks for a single objects, which is one of the main course of spurious
results when analyzing tracks. The simple LAP linker can bridge over missed detections. It does so by inspecting small
tracks that results from frame-to-frame linking, and tries to connect the end of one with the beginning of another one.
The last two parameters of the linker specifies how they are bridged. The Max gap-closing distance specifies how
far can we look for candidates when we try to bridge the end of a track with the beginning of another one. The Max
frame gap specifies how far they can be in time. For instance a Max-frame-gap of 2 means that we can bridge the end
of a track at frame t with the beginning of a track at frame t+2. Which results of bridging over detections missed by
no more than 1 frame.

In our case, the default parameters turn to work fine. Click Next and the linking will proceed. Click on the Finish
button to end the tracking process. If you have a BDV window opened, it should be updated with the tracking results,
like in image below.

By default the tracks are represented by colored lines, extending backward in time. Points in tracks that are close to the

14 Chapter 1. Table of content.

Mastodon

current time-point are green and fade to ref for points that are far back in time. When you change the Z focus, the spots
are painted as circle of radius corresponding the the intersection of the sphere with the current Z-plane. When the spot
sphere does not interest with current Z-plane, it is painted as a small dots. The points of the track away in time that are
not close to the current Z-slice are faded away. We will see later how to customize the display of tracks.

1.1.6 Wrapping up.

This concludes our first tutorial on automated tracking with Mastodon. To continue with the next one, save the project
with the tracks you just generated.

As you can see, after creating a project from a BDV file, the process consists mainly in running in succession the two
wizards, one for detection, one for particle linking. Even if they provide fully automated tracking, Mastodon is made
for interacting with the data as you generate it. We will see in a next section how to manually edit a spot, a link or a
track even at the finest granularity. But keep in mind that the tools we quickly surveyed can be used interactively too.
First the wizards let you go back to change a tracking parameter and check how the results are improved or not. Second,
because you can specify a region-of-interest (ROI) in the detection step, and select the spots you want to track in the
linking step, several runs of these wizard can be combined on different parts of the same image, to accommodate e.g.
for changing image quality over time, or cell shape over time. Mastodon aims at being the workbench for tracking that
will get you to results, accommodating a wide range of use cases.

1.2 Manually editing tracks in Mastodon. TrackScheme.

One of the key feature of Mastodon, the implementation of which made our lives extremely hard and rich, is the ability
to edit manually at any time any spot or link within an annotation that can contains billions of them, while retaining a
good and pleasant response time from the software.

In this tutorial, we will show how to do just that, from existing tracking data, the one we generated in the previous
section. We will use it as an opportunity to present TrackScheme , the track visualizer of Mastodon, as well as
introduce several useful editing features such as the undo/redo mechanism. We will also introduce the various visual
hints that help the user knowing what spot or link is currently edited or inspected, such as the focus, the highlight and
the selection.

Manual editing is often not desirable, first because it is not objective which might be detrimental in situations where
the performance of an algorithm is evaluated, or when an unknown motion characteristics is investigated. Second,
because it does not look like a realistic solution when e.g. thousands of cells are to be followed over thousands of
time-points. Regarding the latter however, several courageous individuals sacrificed their time, energy and sometimes
sanity in doing so, for the sake of finally a scientific answer, or curating the results of an automated analysis, when there
was no other working solutions. See for instance Wolff, Tinevez, Pietzsch et al, 2018 or McDole et al, 2018. If you
are going this way, Mastodon aims at providing tools to do so, in the hopefully fastest and least painful way possible.
Also, you can combine the fully automated approach of the previous chapter with manual editing to correct hopefully
a few numbers of mistakes. Finally, there is also a semi-automated tracking tool, that we will introduce later.

This tutorial will start by presenting you the manual editing tools of Mastodon, as well as and the focus, highlight and
selection tools. Because this catalogue of actions can be a bit dry and long to swallow we will in the last paragraph use
the techniques presented here to remove and rebuild some tracks from the results of the last tutorial.

1.2. Manually editing tracks in Mastodon. TrackScheme. 15

https://elifesciences.org/articles/34410
https://www.cell.com/cell/fulltext/S0092-8674(18)31243-1

Mastodon

1.2.1 TrackScheme, the lineage view and editor.

First, load or retrieve the tracking data of the previous tutorial. You should have a few hundreds of tracks. To open a
TrackScheme view window, press the trackscheme button on the main window.

The TrackScheme view offers a special way of displaying tracks. If you are familiar with TrackMate, you will see that
we brought the same kind of features here, but scaled to large data. You can think of TrackScheme as a workbench
for tracks, where you will edit, cut, stitch and rename them. It displays a kind of “track map”, where a track is laid on
a panel, arranged vertically over time, as a Parisian subway train map. Tracks are displayed hierarchically, discarding
the spatial location of each spot. Each track is laid out going through time from top to bottom. One horizontal line
corresponds to a single time-point in the movie. One vertical column corresponds to a single track, that is all the spots
that are connected by links over time, including divisions and merges. It is a great tool inp artiular when studying and
editing cell lineages.

When opened, the view in TrackScheme is scaled so that the full data is shown, all tracks over all time-points. Even on
our small dataset, most of the tracks and spots appear as single lines or dense boxes. To see the details of each track,
you need to zoom in and navigate around the data. The navigation actions their mappings are listed in the TrackScheme
keyboard shortcuts table.

Try to zoom in until you can see the label of a few spots. TrackScheme implements adaptive level of details depending on
the zoom level, so that we can accommodate plotting a large amount of data without compromising the responsiveness
of Mastodon. On the finer level of details, spots are plotted as circles, with the spot label shown. As you zoom out,
they becomes just empty circles, then points, then they disappear to only show the track as a line. When the zoom level
is so low that several tracks coalesce, they are drawn as a gray box.

16 Chapter 1. Table of content.

Mastodon

1.2. Manually editing tracks in Mastodon. TrackScheme. 17

Mastodon

1.2.2 The focus and the spot labels.

You probably noticed that some spots are painted differently from their neighbors. Mastodon manages three special
collections of spots and links to facilitate making sense of the data across views:

• the selection, painted in green, that manages a classical selection of spots and links;

• the highlight, used to highlight the spot or link currently under the mouse;

• the focus, particularly used in TrackScheme, to indicate what spot is currently focused on by the keyboard inter-
action.

We will first present the focus.

Moving the focus.

The spot that has the focus is painted with a dashed contour (see figure below). Only one spot can have the focus and it
is set by mouse or keyboard interaction. Click on one spot in TrackScheme when fully zoomed, and move across track
and time with the arrow cursor keys. If the focus reaches the border of the window, the view will be moved to follow
it. You can think of the focus as the caret in a text editor. It is meant to facilitate keyboard interaction. See the focus
navigation keyboard shortcuts.

You can also jumps across branches. A branch in a track is a linear section of the track between divisions, fusions or
the track end or start. Alt ↑ and Alt ↓ will move the focus to the branch start and end. In the case where you could
navigate to several branches, for instance you are currently at a cell division and you can go the end of either daughter
cells branches, you can navigate to one or the other with or Alt ↓ or Control Alt ↓.

18 Chapter 1. Table of content.

Mastodon

Editing the spot labels.

By the way, the focus is used to rename individual spots. Zoom in so that we can see the label of the spots and move
the focus to a spot. Press Enter. A small editing box appears inside the spot and lets you change its label.

By default the spot label display the spot ID. If you edit the label then it shows the new label you entered. Editing the
label of a spot does not affect its ID or any other properties. The spot label is just a convenient text field that you can
use to annotate cells and search them later. Only the spots have a label. The links don’t.

The order of tracks in TrackScheme.

The spot labels also control how the tracks are ordered in TrackScheme. We said before that in TrackScheme all the
spatial information is discarded. However the tracks are laid out in a deterministic order. This order is set by the label
of of a track.

There is no special structure to follow individual tracks in Mastodon. For this, we simply use the first spot of a track.
So when we speak of the label of a track, we simply means the label of the first spot (in time) in the track. The tracks
are arranged from left to right following the alphanumerical order of the track labels. So you can change the tracks
arrangement by editing theirs first spot’s label. For instance a track named A will be laid out to the left of a track named
B, and a track named D9 will be put to the left of a track named D10.

1.2. Manually editing tracks in Mastodon. TrackScheme. 19

Mastodon

If you change the track labels now, the tracks will not move immediately in TrackScheme. For the new arrangement to
happen, you need to either open another TrackScheme window, or to edit the data, which we will see soon.

The focus in BDV views.

The focus also works in the BDV views. In these views, the spot that has the focus is also painted with a thick dashed
circle. Parenthetically, notice that the focus is shared across all opened views. If you have a TrackScheme view and a
BDV view opened, and that they both contain a display of the same spot, setting the focus in one view will update this
very spot display in the other views.

When you are in a BDV view and have set the focus, you can also navigate with the arrow keys. After clicking inside a
cell, you can navigate in time and follow a cell lineage through the movie with ↑ and ↓ . If you reach the border of the
view or if the cell moves in Z, the view will be translated to keep the cell in focus. However, you cannot edit the spot
labels in a BDV view nor jump from one track to another with the arrow keys. Navigating across branch with Alt ←
and Alt → however works.

1.2.3 Synchronizing several views together.

You probably noticed that both BDV and views have a toolbar on the of the view itself. This toolbar can be hidden and
shown by a press of the T key. In both view types, the toolbar contains 3 gray locks , that are used to link several views
together for navigation. For instance, if you click on the lock 1 on a BDV view and the same lock on a view, they will
be synchronized. If you move with the focus in the view, the BDV view will be translated to show the focused spot.
If you Double click on a spot in any view, all views in sync will translate to show the spot. This is very handy to
navigate around in TrackScheme, for instance following a cell over time while the BDV view displays where it is in the
sample. You can even combine several BDV views in sync at different magnification to have both an overview of the
cell position in the sample and a close view of the cell itself.

20 Chapter 1. Table of content.

Mastodon

1.2.4 The highlight.

The highlight is the second visual hint we will introduce. You probably already noticed it and used it: the display
of spots and links that are just below the mouse cursor changes. Highlighted spots and links are painted with a thick
continuous line. To highlight a spot or link you just have to lay the mouse over it. As for the focus, the highlight is
common to all views, and if you highlight a spot or a link in a view, its display is changed in all the views that show it.

1.2. Manually editing tracks in Mastodon. TrackScheme. 21

Mastodon

1.2.5 Deleting individual spots and links.

The highlight is especially important for track editing. The commands that delete a single object are actually applied
to the highlighted spot or link. For instance, to delete a spot or a link in , simply move the mouse cursor over it so that
it is highlighted and press D. You should see the tracks being rearranged following the deletion. In a BDV view, the
highlight and deletion mechanism is the same.

1.2.6 Linking spots.

Creating links between existing spots happens in a similar way, except that you have to point to a source spot and another
target spot for a single link. In TrackScheme , move inside a spot until it is highlighted (no mouse-click). You must be
at a zoom level large enough so that a spot is at least painted as a dot or a circle. Then press and hold the L key. Without
releasing the key, move the mouse out of the spot. You should see a red line representing the link to create. Move the
mouse to the desired target spot, until it becomes highlighted. The red line should snap to it and become thicker. If you
now release the key now, a new link between the source and target spot is created and in TrackScheme it should cause
a rearrangement of the tracks. Notice that you cannot add a link between spots in the same frame. Also notice that you
can toggle links this way. If you draw a link between two spots that are already connected, their link will be removed.

In BDV views, it is again very similar. Move the mouse over a spot until it is highlighted then press and hold the L key.
The view will automatically move to the next frame. The link to create will be painted as a white line, and the ghost
shape of the source spot is painted as a dashed white ellipse. Move the mouse to the target spot in this frame until it is
highlighted, then release the key. The link is created. If you press Shift L in a spot, the BDV view will move to the
previous frame, and create a backward link.

You cannot move in Z while creating a link this way. You must orient the BDV view so that the source and target spot
are roughly in the same displayed slice. However you can move in time. While still holding the key, press the or and
or key to navigate backward and forward in time. This way you can create links between spots separated by more than
one time-point.

22 Chapter 1. Table of content.

Mastodon

1.2.7 The selection.

The selection is the third visual cue of Mastodon and probably the most important one. It behaves and has the role of a
classical selection tool you would find in another software that manages a collection of data items. It is meant to select
a subset of spots and links and apply operations to this subset. Contrary to the focus and the highlight, any number of
spots and links can be put in the selection.

The selection in TrackScheme is built in a classical way. Click and drag from an empty part of the view. A red box
appears to let you select an area of the view. Release it when it contains the part of the tracks you want to select, and
selected items should now be painted in green. All spots and tracks in the selection box are put in the selection, even
if the zoom level is too small for them to be painted. Control A selects the whole data. There are variants to select
only all the spots (Control Alt A) or only all the links (Control Shift A).

Shift click on a spot or a link to toggle it in the selection. To clear the selection, click on an empty part of the
TrackScheme view. In you can also add spots - but not links - to the selection using the focus. For instance, if you
combine navigating with the focus while holding the Shift key, spots that you navigate to will be added to the selection.
Shift Alt ↓ will add all the spots from the focused spot to the end of the branch it belongs to. Finally there are
commands to add a full track from the currently focused spot. Shift space will select the whole track of the focused
spot. Shift selects all the spots and links in the track that are forward in time relative to the focused spot, and Shift
does the converse backward in time.

The selection is shown in BDV views as red or magenta spots and links by default. In BDV views you can only edit the
selection via Shift click. The interaction with the focus also work as described above. These default key-bindings
are recapitulated in the table of shortcuts for the selection actions.

1.2. Manually editing tracks in Mastodon. TrackScheme. 23

Mastodon

1.2.8 Editing spots and links with the selection.

The selection actions are all applied in bulk. You can delete all the spots and the links currently in the selection with
Shift . If your selection includes spots that are not linked, pressing will Shift K link them sequentially. If the
selection contains more than one spot per frame, only one of them, picked randomly, will be linked.

1.2.9 Manually adding spots and linking them.

Adding new spots requires specifying where to add them. Since does not include spatial information you cannot use it
to add spots. You can only add spots in the BDV views.

To add a new spot, simply hover the mouse in a BDV view where you want the spot to be created, and press A. A new
spot will appear, with a radius given by the last radius value you used. You can respectively decrease or increase the
radius of a spot by pressing Q and E . Modifiers affect the amount of radius changes. Shift Q and Shift E change
the radius by a larger amount and Control Q and Control E by a finer amount.

Spots created this way are not linked. It might not be the quicker way to follow manually a cell over several frames.
To do so, you can use a little trick. When you want to add a spot, and link it to an existing one, arrange the BDV view
so that this source spot is visible in the displayed time-point. Then place the mouse cursor inside the source spot, and
press and hold A. Like for creating links, the BDV moves to the next time-point, paint the source spot and link with
white, dashed lines, and let you position the new target spot. While you keep pressed, you can move the target spot
around. When it is placed in the desired position, release A. The new spot is created and linked to the source spot. This
way, you can quickly follow a cell or an object and manually creates a track for it by just positioning the mouse with a
few presses of A. If you press Shift A while in the source spot, the new spot will be added in the previous frame.

Another equivalent possibility is to use the auto-linking mode. To toggle this mode on or off, press Control L (the
viewer will display a message stating whether it is on or off). When the auto-linking mode is on, everytime a spot is
added (A), it is automatically linked to the previously selected spot, if there is exactly one spot in the selection. The
newly created spot then becomes selected so that all spots added in succession while in this mode are linked to together.
The links are created whether new spots are forward of backward in time, which can be difficult to visualize sometimes.
It is wise having a TrackScheme window opened linked to the BDV in which you are doing the editing.

1.2.10 Moving spots around.

To move an existing spot we use a similar interaction with the spots. In a BDV view, place the mouse cursor inside the
spot you want to move, then press and hold space. While you hold space pressed the spot will move where you move
the mouse. Release the space key at the desired location.

1.2.11 The undo/redo mechanism.

One of the most useful actions is undoubtedly undo and redo. To undo just press Control Z and to redo use Control
Shift Z . There is no limit to the number of undos you can do. And everything can be undone in Mastodon, even
tag definitions. In our humble opinion, this is one of the nice reasons for Mastodon to exits: a tracking and lineaging
software that aims at combining automated and manual approaches, in a very efficient way..

24 Chapter 1. Table of content.

Mastodon

1.2. Manually editing tracks in Mastodon. TrackScheme. 25

Mastodon

1.2.12 Putting things in practice.

26 Chapter 1. Table of content.

Mastodon

Make sure you have one BDV view and one view open, and that both are linked using the same lock. In TrackScheme,
select one of the spot or link that belongs to one of the long tracks; the ones that extend from the first time-point to the
last. Press Shift space. You selected the whole track to which the spot or link you selected belong to. Press Shift .
The track has been removed.

Let’s remove a couple of other tracks another way. Click and drag in to draw a selection box around some long tracks.
Then press Shift . Our model should now lack several good tracks we will try to put back manually. For clarity, also
remove all the tracks on the right part of the view, that do not start at the first time-point.

In the BDV view, go to the first time-point, and look for a cell whose spot has been removed. Pan the view (right-click
and drag), adjust the zoom (Control Shift Mouse-wheel) and the Z position (Mouse-wheelwith or without Shift
) so that the cell is well in view. Then put the mouse cursor over it and press A. A spot has been added on the cell.
The fine adjustment of the spot position in 3D can be made easier with a second BDV view. Open another BDV view,
zoom and rotate it so that it is aligned with the XZ plane by pressing Shift Y. Add it to the lock group by toggling
the right lock in the toolbar. Go back to the first BDV view, and align it with the XY plane by pressing Shift Z. You
must now find the spot we just added. If you cannot find it in any of the two BDV view, look for it in TrackScheme.
It will be in the rightmost column at the first line, since we added the spot to the first time-point. Double-clicking on
it in TrackScheme will center the two BDV views on it. Now that the two BDV views are centered on the spot, you
can adjust its XY and Z positions over the cell using the two views. In any of the two BDV views, put the mouse
cursor, then press and hold space. Move the spot the desired location and release space. The spot might not have the
right diameter to encompass the cell. Change its radius by pressing Shift Q and Shift E (without Shift for finer
adjustments) until you are happy with it.

You must now do it for the same cell in the subsequent time-points. Press in a BDV view to move to the next time-point.
Again, put the mouse cursor roughly at the center of the cell and press . Adjust its position with and move to the next
time-point.

1.2. Manually editing tracks in Mastodon. TrackScheme. 27

Mastodon

We have to repeat this for all the time-points of the movie. This might be tedious but does not have to be too long.
When I need to do this I adopt a posture similar to what I have when I play PC video-games: the right hand on the
mouse, the left hand over the left side of the keyboard, over the A, D , Q and E. The Shift key can be accessed with the
little finger, the space key with the thumb. The N and M keys to navigate over time are accessible with the left thumb
also.

We created a bunch of spots, but they are not linked. Move to the TrackScheme view. You will find the spots you last
created there always at rightmost part of the view. Since they are not linked, they should appear each in their separate
column, in a stairway manner. Select them all by dragging a selection box around them and press Shift K. They
should now link together into a new track. With one of the spot of this newly created track selected, press to jump to
the first spot in the track. Then press to edit its name into something like My first track.

We can create a track directly. Let’s do this by backtracking a cell from the last time-point to the first. In a BDV view,
move to the last time-point, and place the mouse cursor over an annotated cell. Create a spot over it by pressing and
center and resize it until satisfaction. Now keep the mouse cursor inside this spot, and press and hold Shift A. The
BDV view moves to the previous time-point and creates a new spot there, already linked to the other one. By repeating
this you can create a track that will backtrack the cell until it appears in the movie.

We have now restored two of the tracks we removed at the beginning of this paragraph. Hopefully now you feel enough
at ease to do these manipulations quickly, efficiently and without too much hassle. But one of the concluding beauty
of this tutorial is that you can restore the data as we had it at the beginning by roughly 100 presses of the Control Z
keys.

1.3 Inspecting large datasets.

In the previous chapter we have seen how to edit single spots and links in Mastodon, what can be called point-wise
editing. As we said before, the goal of Mastodon is to let you harness very large images, for which the number of
annotations can be very large too. It can be very easy to get lost within such large images and loose track of where we
are within the sample image and what cell we follow. So we have added several features that are made especially to get
your bearings in large datasets. More than anything, these features are about giving visual cues that ease orientation,
and exploit events and signal that would help a human brain get a sense of orientation. We took some inspiration from
video-games, that are very good at communicating condensed and synthetic information to the player (but only for a
limited part; there is no screenshake when you delete a spot).

1.3.1 Bookmarks in the BDV views.

The BigDataViewer (BDV) is the image component of Mastodon and is meant to deal with very large images. It
offers interactive and responsive user interaction, and to achieve this without any hardware acceleration, it resorts to
only displaying a 2D slice through the data. This 2D slice can be arbitrarily positioned and oriented. When it comes
to annotating a 3D image, using a 2D slice is a good approach. A full 3D view might actually hinders proper and
efficient annotation of the data with a flat 2D screen and a mouse. The 3D view leads to ambiguities about the depth
positioning of your cursor, and the image data that stands between the camera eye and the plan of interest may hide it.
Parenthetically, these issues with interacting with 3D data are best solved with virtual reality devices, but Mastodon is
not a tool that exploit them. The 2D view offer clarity but conversely does not offer a great feeling of the context.

However to facilitate orienting yourself, or retrieving a key point in the data, you can register bookmarks in the BDV
views. The bookmarks were already implemented in the tool itself before its use in Mastodon. They let you store a
position and orientation in space as bookmarks. You can later call them again and retrieve said position.

• First move to the position and orientation you want to store in a bookmark.

• Then press B. You should see a message prompting you to press another key (see the image below).

• Pick one and press it. This key will be used as a tag for this bookmark.

28 Chapter 1. Table of content.

https://imagej.net/plugins/bdv/

Mastodon

• To later retrieve the position and orientation of this bookmark, press B then the bookmark’s key. The view should
animate and restore the stored position and time-point.

• O does the same things, but only restore the bookmark orientation, not its position.

You can have many bookmarks, all identified by the key you press after the bookmark command. Bookmarks are saved
with the BDV settings file that also saves the channel color and display range. You can save such a file with the or the
key. The settings file is loaded when a new BDV window is displayed.

1.3.2 View modes in BDV.

The BDV views has also four different visibility modes that help making sense of tracks of interest. You can cycle
between them by pressing the V key with a BDV active. These four views are:

All. In this mode (the default), all the tracks are visible. It follows the display configuration you set with the render
settings however.

1.3. Inspecting large datasets. 29

Mastodon

Track of focused vertex. In this mode, only the track (e.g. the whole lineage of a cell) of the currently focused spot is
displayed.

30 Chapter 1. Table of content.

Mastodon

This visibility mode is particularly useful in conjunction with a TrackScheme window, where you would move the focus
across different lineages with the keyboard. Comparing the image above with the image of the previous mode (movie
and annotation by Mette Handberg-Thorsager and colleagues in the Tomancak lab), you can see with this visibility
mode that the lineage of a progenitor tends to colonize only one side of the embryo.

Selection only. In this mode, only the content of the current selection is displayed.

1.3. Inspecting large datasets. 31

Mastodon

This visibility mode is best used along with the Selection creator, the we describe later, and that lets you set the selection
based on various criteria.

None. In this mode, the tracks are not displayed.

32 Chapter 1. Table of content.

Mastodon

1.3.3 Linking several views together.

You can generate as many views as you want in Mastodon, and you can link several of them via the lock system. This
is a good way to improve the perception of context, by linking several views that display for instance a close-up view
of the data and another view displaying a bird-eye view of it. We already presented this feature in the previous tutorial.
The figure of this section shows an example of a view configuration with three views in sync, showing each a different
level of desired information. We direct you there for details on how to use the lock system.

1.3.4 In TrackScheme everything is animated.

If you went through the previous tutorial, you probably noticed that editing events are associated with animations in
TrackScheme. For instance, if you delete a link in the middle of a track, the ‘bottom’ part of the track will move to the
left side of TrackScheme, in a quick animation. If you undo the deletion, the branch will move back to its original place
the same way. Deleting a spot makes it fade rather than disappear. These animations are more than a toy. Something
we learned that hard way with MaMuT is that point-wise editing the data can completely confuse and disorient the
user. A single link deletion will generate a big rearrangement in the track hierarchy, and therefore will change the view
a lot. Without any subtle cues to the user, these changes will disorient them quickly. Animating the editing events is a
great way to hint them about what happens to the data modify in a user-friendly way.

We also added some fluidity and inertia in navigation. In the TrackMate and MaMuT version of TrackScheme, panning
and zooming were done in discrete discontinuous steps, that would also lead to confusion. In Mastodon, moving and

1.3. Inspecting large datasets. 33

https://imagej.net/plugins/mamut/index
https://imagej.net/plugins/trackmate/
https://imagej.net/plugins/mamut/index

Mastodon

zooming are done continuously. There is even some inertia again to emulate interacting with a tangible panel.

1.3.5 Spatial context in TrackScheme.

There are situations where the density of cells displayed in is so high that even at high zoom level this view is barely
useful. The hierarchical arrangement of tracks in is handy to grasp how tracks behave over time. But since it eliminates
spatial information, the neighbors of a track do not bring information to it.

The spatial context in reconciles spatial information with the hierarchical layout. In views, the toolbar has a context list
box, from which you can select between full graph and the names of all the BDV views currently opened (typically
BigDataViewer 1, etc). When full graph is selected, the full lineage data is shown in TrackScheme. This is the
classic view. If you pick an item corresponding to an opened BDV view, then this view will only display the lineages
of the cells currently displayed in the target BDV view. And the view will be updated (and animated) as you pan, move
in Z, zoom or unzoom the BDV view.

Try it now with the data from the previous tutorial. Open a BDV view and a view. In the view, select the
BigDataViewer 1 item (it might not be 1 in your case). Then in the BDV view, zoom so that almost only one
cell is displayed. The view should display considerably fewer tracks. As you unzoom, some lineages will appear in
TrackScheme. You will probably see that some lineages appear in gray, with dashed lines. They are called “ghost”
lineages: These are the lineages of cells that are not within the BDV view at the time-point currently displayed, but that
will enter this view later or earlier in time. The context feature is immensely useful when studying tissue development
or coordinated cells movement.

1.4 Numerical features and tags. The table view.

Mastodon is a tracking and lineaging tool. Its output is a collection of tracks, and the analysis of these tracks to yield
statistics on velocity, displacement is carried out in another software package such as MATLAB or Python. Nonetheless
you will find in Mastodon tools to compute numerical features on data item. Numerical features are numbers that can
be calculated on spots, links and tracks of the data. For instance there are feature for the number of links that touch a
spot, or the displacement of a link or the number of spots in a track. You can find them within Mastodon because it
is convenient, but also because they are very useful for the interactive exploration of your data. Coupled with feature-
based coloring, the display and sorting of values in the table view and the selection creator tool, they can considerably
accelerate and facilitate making sense of the data.

Numerical features are numbers that classically relate to a physical quantity. When we need to categorize items, we rely
on tags. We describe them just below. This chapter will also show you how to compute numerical features and create
a coloring view from the feature values and tags. Doing so, we will introduce the third kind of data view in Mastodon:
the data tables.

34 Chapter 1. Table of content.

Mastodon

1.4.1 Tags and tag-sets.

As we said above, every-time you need to categorize certain data items, or need to visualize categories, you should rely
on tags. Let’s suppose that you are investigating the trajectories of cells in a developing embryo from an early stage to
a stage where the embryo is polarized. Some cells will migrate to the anterior part, some others to the posterior part,
etc. You might want to tag cell tracks with the Anterior or Posterior tag, to investigate where do these cell come
from in the early embryo. Or let’s say that you are curating the results of the automated tracking on a large images. The
tracking results might have some inaccuracies, and you want to correct them for important tracks. Because there is a
lot of tracks, you share the workload with some colleagues. You work asynchronously with them, editing the Mastodon
file one after another. Doing so, you can use tags in Mastodon to mark some tracks as reviewed by you. Your colleagues
will use a tag for themselves, to ensure that no two scientists are reviewing the same track twice. All the cells that are
not tagged in this categorisation are still waiting to be reviewed.

In Mastodon, a categorization corresponds to a tag-set. A tag-set defines a property that can have a reasonable number
of discrete values, or tags. In the first of the two examples above, Location would be a tag-set to specify the location
of cells. Anterior and Posterior would be two tags belonging to the Location tag-set. In the second example,
Reviewed by would be a tag-set, and Mette, Pavel, Tobias and Jean-Yves would be 4 tags of this tag-set.

You can assign tags to spots and links. To assign a tag to a whole track, you have to assign this tag to all the spots and
links of this track. One data item (a spot or a ling) can have 1 or 0 tags per existing tag-set. But they can be categorized
by as many tag-sets as there is. For instance, a spot can have the tag Anterior in the Location tag-set, and the tag
Pavel in the Reviewed by tag-set. Or it can be not tagged in the Reviewed by tag-set. But it cannot have both the tag
Mette and the tag Tobias because they belong to the same tag-set. Each tag-set works independently, and clearing a
tag-set does not affect the others even for one data item. Now that we set things straight, let’s see how to create tag-sets.
We will base the demonstration in this chapter on the data we generated in the first tutorial.

Creating tag-sets.

On the main Mastodon window, there is a configure tags button . Pressing it opens the tag-set dialog. Right now,
it appears as an empty table made of two columns. This is where you enter tag-sets and tags.

1.4. Numerical features and tags. The table view. 35

Mastodon

Press the green + button on the left column to create a new tag-set. A default name is shown for the tag-set, that you
can edit. You can also directly press the Enter key to immediately start editing the new tag-set. Let’s say we want to
create the location tag we talked about before. Type Location in the text field. An empty line followed by a green +
button should appear on the right column. This is where you will enter the tags of this tag-set. Click on this button, or
press the key followed by the Enter key to create a new tag. For instance, the Anterior tag. Note that a tag is only
made of a label (the text) and a color. The color will be used in Mastodon views. Create a second tag for the same
tag-set called Posterior. Pick the color as you like. Now try to create another tag-set called Reviewed by and create
some tags in this tag-set. The tag-set dialog is normally fully navigable with the cursor keys, so that you can enter tags
quickly if you have a lot of them. You can create new tag-set or new tags with the Enter key, and delete them either
with the key or by pressing the red - button.

When you are finished, press the OK button.

Assigning tags to data items.

Tags are set via the selection tool, presented in the second tutorial . Once you have some spots and links in the selection,
you can assign a tag to it via the menu. The menu content will be updated with the tag-sets and tags you defined in the
tag-set dialog, described above. This will work in any Mastodon views, BDV or TrackScheme.

36 Chapter 1. Table of content.

Mastodon

TrackScheme ships a second way to set tags quickly from the keyboard. After selecting the spots and links of interest,
press the key. A floating menu should appear on the left part of the view panel. There is a bit of naming clash in the
floating menu. Here, tag-sets are called tags and tags are called labels. Select the desired tag-set with the 1, 2, .. keys.
The menu now shows the tags defined within this tag-set, that you can select the same way. Note that there is a way to
remove all the tags over all the tag-sets on the selection by pressing on the first menu, or just the tags of the selected
tag-set by pressing on the second menu.

1.4. Numerical features and tags. The table view. 37

Mastodon

38 Chapter 1. Table of content.

Mastodon

Coloring views by tag-sets.

The tags we just defined and assigned can be used in with the views, to highlight the items that are tagged. In the
View > Coloring menu of any view in Mastodon, you will find a sub-menu updated with the tag-sets you created
among other choices. By default, newly created views are colored with the coloring mode, which simply colors all
the spots and links the same way, taking colors from display settings. If you select a mode corresponding to a tag-set,
tagged spots and links will appear painted with the color you chose for the tags of this tag-set . This is very handy to
mark some locations in the image or highlight interesting tracks in the data. Later we will see that tags can be used
to retrieve specific items for further processing. Finally, in there is an option to show a legend of the current coloring
mode. You can toggle it on or off and set the location of this legend in the View > Colorbar menu.

1.4. Numerical features and tags. The table view. 39

Mastodon

1.4.2 Numerical features.

Numerical features are values that are calculated from the data. For instance the mean intensity within a spot, or the
displacement along a link. They are very generic: the main restrictions is that there must be a data item (a spot or a link)
per feature value. But the feature itself can be scalar, non-scalar, real, integer, a string, a vector, etc. They are labile.
Because they are defined for a data item, they will become invalid as soon as the data item changes. Think of what
happens to the spot mean intensity if the spot is moved over the image for instance. Because we want to accommodate
extensibility and large data, we have to use a special system that we describe below.

Feature computation.

Some numerical feature values are calculated by feature computers. Feature computers are actually specialized
Mastodon plugins, made so that it is easy for a 3rd party (you) to implement their own features in Mastodon. We
explain you to write your own feature computer in the second part of this documentation, dedicated to technical infor-
mation.

Because some feature computation can take very long on large images, you have to trigger it manually. On Mastodon
main window, you can find a button compute features. Pressing it will show the feature computation dialog. The
feature computers are listed on the left panel.

You see in the panel only the feature computers that takes a significant time to compute. The other ones are computed
on the fly and are always visible in the data tables (see below). For instance, the Link displacement and Link
velocity are computed on the fly and do not appear in this panel.

Clicking on the computer name displays some information about the feature they compute in the right panel. Note that
they are named ‘features’ on this panel, but they are in reality the feature computers. For instance if you click on the
Spot intensity, you will see in the information panel that this computer generates a feature for the mean intensity,
median intensity, etc. Note also that they can have dependencies. For instance, the Track N spots feature computer
depends on the Spot track ID feature to be present at the time of computation.

40 Chapter 1. Table of content.

Mastodon

The check-box on the left of each feature computer name triggers whether they will be part of the next feature compu-
tation. Press the Compute button to trigger computation of features.

Once the computation of all the features is complete, all the small clock icons that were shown right to the feature
computer names now turned to a green dot. This is how we keep track of the validity of the feature values. Since
the feature computation is triggered manually, and that a feature value might invalidated if the data changes (new spots
added, removed, moved, changed the radius, added or removed some links), this icon serves as a signal for feature value
de-synchronization. If the icon is shows as a clock , it means that the data changed since the last feature computation,
and that the feature values are out of sync. If is shows a green dot, then the data did not change since last computation,
and the feature values are sure to be valid. This is very important for proper interpretation of the data, and you will
have to show the computation dialog often just to check the feature values validity. By the way, you can check now how
the validity flag works. While keeping the feature computation dialog open, move a spot in a BDV view. You should
see that all the green dot icons now turn to the clock icon. Also, if you now deselect some feature computers before
launching a new computation, the validity flag will not turn to the green dot icon for those feature computers.

You probably have noticed, thanks to the progress bar, that the intensity-related features are the ones that take the most
time to compute. Indeed, they require loading all of the data blocks on which there are spots. This could rapidly
become cumbersome for large datasets, if you have to recompute all of the features every-time a spot is added or
edited. Fortunately we implemented an update mechanism for feature computation. After the first computation, which
possible takes very long, only the spots that have been added or modified since the last computation are considered for
computation.

Now that we have feature values computed, we would like to inspect them and export them for further analysis. This is
the role of the table view, but before getting to it, we will make a little detour to showing how to use features to generate
coloring, accelerating updates of computation and saving them to disk.

1.4. Numerical features and tags. The table view. 41

Mastodon

Coloring views by numerical features.

We have seen above that tag-sets could be used to generate coloring of the data items shown in a view. Indeed, in the
View > Coloring menu of each view, that tag-sets are listed and when selected, are used to assign a color to each data
item. We can do something similar with feature values, except that feature based coloring requires more input from us.

Feature color modes need to be created first, and this is done in a dedicated user interface. Select the File > Preferences
menu item in the main window or any view. This shows the preferences dialog. It is organized with a side-bar on the left
that contains the various items that can be configured in Mastodon. Parenthetically, you can see that you can configure
the display style of the and BDV views, and the keymaps. But we will see this later. In the sidebar select Feature
Color Modes. The panel on the right now display the feature color mode configuration panel:

Its top line has a drop-down list that contains all the color modes already defined. Right now, there is only one, called
Number of links. As the built-in suffix indicates, it is a built-in color modes, and it cannot be edited. To create a new
one you must duplicate it and rename the new one. Do so by clicking on the Duplicate button, then on Rename. Let’s
create a color mode that color spots and links based on the mean intensity inside the spots, that we would call Mean
intensity.

The rest of the configuration panel is made of two parts. The top part configures the spot coloring, or how we color
spots. The bottom part configures the link coloring, or how we color links. In Mastodon the data is organized in a
mathematical graph, in which the vertices are the spots, and the edges are the links that connect spots from one frame
to another, so you will sometimes find in Mastodon and in this manual the vocables vertex and edge to design a spot
and a link respectively. The vertex color mode specifies where do we take colors from. You can choose between:

• Spot, which means a spot will take its color from a feature value it owns.

42 Chapter 1. Table of content.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Mastodon

• Incoming link, which means a spot will take its color from a feature value owned by the single incoming link
that targets this spot. This is the link backward in time. If there are no such links or more than one, then the
default color is used.

• Outgoing link is the same thing, but for the link forward in time.

• Default mode does not rely on feature values but simply uses the default color in the view.

There are also modes that are related to the branch graph (Branch-spot, etc.) but we will discuss them in its dedicated
tutorial.

Depending on the mode you chose, the content of the drop-down list below, called Spot feature, will change to
reflect either the list of spot features or the link features. Select Spot as a color mode and Spot intensity as feature.
Two new drop-down list appear on the right of the feature list. One contains the list of projections in the feature and
the second one contains the list of channels in the dataset.

We need to explain a bit what are feature projections. We said above that a feature could be roughly anything numer-
ical, and was not necessarily a scalar. It could be a vector, a tensor, a complex number, etc. However to be usable and
useful in Mastodon, features are required to expose a sensible list of projections that compose them. Feature projections
are scalar and real values that can decompose or project a feature on a real axis. How they are defined is up to the person
that created the feature computer, but we can rely on the hope that they choose wisely. For instance, a feature that gives
the velocity vector of a link will reasonably expose 3 projections, one for each of the X, Y and Z component of the
vector. Or maybe the polar angle, azimuthal angle and norm of this vector. Or maybe the 6 projections since they can
be calculated on the fly. A complex feature value will reasonably expose 2 projections, one for the real part, one of the
imaginary part. Etc. The Spot intensity feature has six projections: mean, max, min, median, sum and standard
deviation of the intensity inside a spot. Since all can be computed on any of the channel present in the dataset, their
number is multiplied by the number of channels. The configuration panel changes according to the number of projec-
tions in a feature and its multiplicity. For features that are made of one real value with no multiplicity, the projection
list is superfluous and not shown. In our case, we simply want the mean of the only channel in the dataset.

1.4. Numerical features and tags. The table view. 43

Mastodon

Coming back to the color mode configuration, next we need to pick a color-map. A color-map acts as the LUT for
an image, and maps a color to a certain value. Mastodon ships about 20 of them, many taken from the MatPlotLib
project. Finally, you have to specify a min value and a max value that will act as the brightness and contrast values for
an image. Values below the min you defined will all be displayed with the first color of the color-map and values larger
than the max with last. The black square you see next to the graded representation of the color-map is the color used
for data items for which the feature value is not present or undefined (division by zero, etc). The autoscale button
computes the min and max automatically from the feature currently selected with the values taken from the last feature
computation.

The link coloring works exactly the same, except for the link color mode.

• Link means that a link will be colored by a feature value it owns.

• Source spot will take a feature value from the source spot of this link, that is, the first in time.

• Target spot does the same but for the last spot in time of this link.

• Default mode does not rely on feature values but simply uses the default color in the view.

To build our example feature color mode, choose Source spot as color mode, and use for instance the viridis color-
map along with 700 and 1100 for min and max values. You can also click on the Copy from Spot settings that
will automatically configure the link color mode so that it matches what is set for spots.

Like for tag-sets, the menu is now updated with items corresponding to the color modes we created. If they are grayed-
out, it means that the feature values they depend on is not yet computed. This kind of view immediately reveals
important aspect of the data, even at a very high level. For instance with our custom color mode, we can quickly find
cells that are the brightest, and visually inspect how the intensity in cells change over time.

44 Chapter 1. Table of content.

https://matplotlib.org/3.1.1/gallery/color/colormap_reference.html
https://matplotlib.org/3.1.1/gallery/color/colormap_reference.html

Mastodon

1.4. Numerical features and tags. The table view. 45

Mastodon

1.4.3 The data table views.

The main table view.

The BDV and views are not suitable to display all the feature values we computed. The coloring we have been using
with them is good only for visualization purpose. There is a nice view to properly inspect and exploit feature values
in subsequent steps in your analysis: the table view. In practice, the table view is simply a tabular representation of
the data items in Mastodon. Spots and links are displayed in a list where a single row corresponds to a data item, and
columns to feature values and tags. You can create a new table view by using the menu . If you did compute all the
features, it should look like the table below:

46 Chapter 1. Table of content.

Mastodon

The view is made of several tables, the first one for spots and the second one for links. We will discuss the others, made
for the branch-graph, later. Right now it is pretty empty. The spot and link tables only show the label and ID of the
spots and a few feature values that are built-in. But they do not show the spot intensity features we configured above.
Navigating in this table is done classically: the arrow keys ↑ and ↓ jump from one row to the next, and ← and → from
one column to the next. and jump page per page. Control and Control moves across tables..

After computing some features and defining some tag-sets, the table shows new columns Note that the column headers
represent the feature with their projection and physical units on several rows. For instance, the Spot intensity
feature name is displayed on the first row of the column header. The header is split in two columns on the second row,
one for each projection included in the feature. And in the third and last row, the units of each projection is display
in brackets (Counts in this case). The header of the tag-set columns are similar. The first row shows the name of the
tag-set, and the second row shows each of the tag the set contains, with the tag chosen color as background.

The table view can be used to edit in part the data. For instance you can edit the spot label directly in the table. Just
navigate to the row of spot you want to change the name of and the Label column, then press F2. The label field
becomes editable. When you are done editing, press Enter. The tags are displayed as check-boxes in the table, that
you can set directly by clicking on them. Or you can navigate the desired row and column and set them with the space
key.

1.4. Numerical features and tags. The table view. 47

Mastodon

The highlight and selection are also shared with table views. When the table view is not active, selected items are
shown with a gray background. The highlight spot or link is shown in the table with a thick black border.

To add rows to the selection, the default key-bindings are again standard. Press Shift Left-click to add a range of
rows to the selection from a table view, or use Shift ↑ or Shift ↓ or Shift and Shift . By pressing Control
Left-click or Command Left-click you can toggle single rows in and out of the selection. Of course, all of the
commands related to the selection we have seen before also apply to the table views. The shortcuts to navigate in the
table views are summarized in the table of table shortcuts.

Another feature of data tables is that they can be made slave of a spatial context, like for TrackScheme. When another
BDV view is active, you can select its name in the drop-down list on the top-right part of the table. Then the table only
shows the data items that are currently displayed in the master BDV view. The notion of spatial context is explained in
the previous tutorial.

48 Chapter 1. Table of content.

Mastodon

Sorting rows.

The table can be sorted by clicking on the header of the column you want to use for sorting. It works for labels, IDs,
feature values and tags

The selection table.

There exists a variation of the table view, but that display only what is currently in the selection. To display such a
table, go to Window > New selection table in the menu. The selection table that appears only shows what is in
the selection, and is constantly updated to reflect changes in the selection. You cannot use it to edit the selection like in
the main table. However the row you pick in this table will set the focus and highlight in other views. Everything else
applies to the selection table.

Feature-based coloring in table views.

Of course, feature based coloring works with the table views. And it can give a pleasant display when combined with
sorting rows by a feature column.

1.4. Numerical features and tags. The table view. 49

Mastodon

Exporting table data.

The data currently displayed in a table view can be exported to CSV. When a table window is active, select the menu
item File > Export to CSV. You will have to specify a saving location and a name. Only the data displayed in the
currently visible table are saved, and ordered as in the view. This means that if you call the command from a selection
table, only the current selection will be saved.

50 Chapter 1. Table of content.

Mastodon

1.5 Semi-automated tracking.

Let us suppose we are dealing with a difficult image in which me must track only a subset of cells. The cells are difficult
to track automatically, for instance because there are many spurious structures labelled. Or because there are other cells
of different sizes in the tissue we are studying. Or because the image quality varies in time and space. The data is such
that that fully automated algorithms introduced in the first tutorial won’t give us fully accurate results. We can use the
manual editing tools introduced in the second tutorial and curate the results of automated tracking, manually removing
spurious detections and links, and fixing incorrect ones. Another approach would be to start from a blank annotation
and track manually only the cells we are interested in. Both approaches might be long and tedious. We introduce in
this tutorial tools for semi-automated tracking, that should alleviate the work of the second approach.

Semi-automated tracking is simply a way of following a specific cell that you picked-up manually. The tracker will
follow the cell over time, and create spots and links for a certain amount of time-points. It searches for the best spot
candidate in the next time-point around the location of the spot. It then creates a new spot there and links it to the
previous one. This procedure is repeated this for a certain number of time-points you can set, creating or augmenting
a track starting from the spot you selected.

The semi-auto tracker can be configured to work backward in time (backtracking), to have a certain search radius, or a
certain sensitivity to spot quality. The way it interacts with existing annotation can be configured too. You can make it
stops when it meets an existing spot, linking to it or not. You can make it connect to small tracks and resume tracking
when it meets the track end. You can force it to only create links on already existing spots. These configuration options
give rise to several use-cases we will also survey in this chapter. But the important message is that semi-automated
tracking is a convenient means for dealing with difficult cases, when a fully automated approach fails, and when the
data to track is large that doing it manually is inconvenient. Or when you only care for a subset of cells in a dense tissue.

1.5.1 Simple semi-automated tracking.

We will introduce semi-automated tracking on a movie with empty annotation. Open the dataset we have been using
so far, and clear all annotations (for instance select all Control A then delete selection Shift). Then pick a cell in
the top layer, and create a spot, centered on its brightest part, as is done below. Adjust its radius and select it. Open a
TrackScheme window to visualize the tracking progress.

To start semi-automated tracking, press Control T. A log window should open, and tracking should proceed. If the
log does not complain about candidates being too far, you should end up with something resembling the images below.

1.5. Semi-automated tracking. 51

Mastodon

The tracking stopped after 10 frames, and the last spot added is now in the selection. Each spot is centered on the cell
we started with, and it has the same radius that of the first spot we created. You can resume semi-automated tracking
from the last spot created by just pressing Control T again. If you do it one more time you should reach the end of the
movie, with a new track following a single cell over the full movie duration. To get it, you just had to press Control
T 3 times. If you have more than one cell in the selection, they will be tracked one after another.

1.5.2 Configuring the semi-automated tracker.

The tracking does not always succeed. Depending on where you position the initial spot, it might fail, for instance
stating in the log that if found a suitable spot, but outside the tolerance radius. (In this example movie, this happens
often because the cells are very elongated along the Z direction, and the tracker tends to find candidates near the top,
brightest part of the cell.) The parameters that control for instance the tracker search radius can be set in the semi-
automated tracking configuration dialog, in the . The window show in Plugins > Tracking > Configure semi-automatic
tracker. The following window should appear.

52 Chapter 1. Table of content.

Mastodon

This dialog is very similar to the one used to configure feature color modes, that we have seen the tutorial just before.
It also works the same way: the top elements are made to manage several tracking configuration, that will be stored on
disk and retrieved in your next Mastodon session. There are two default tracking configuration: the Forward one is
the default that we just used. The Backtracking configuration tracks backward in time. The other parameters controls
the tracker behavior for the configuration currently selected in the top drop-down list. To explain what they do we need
first to describe how the semi-automated tracker works:

1.5. Semi-automated tracking. 53

Mastodon

The semi-automated tracker works by processing only a small neighborhood around the initial spot, (called the source
spot later). This neighborhood is centered on the spot center (in magenta above), but taken in the next time-point (or
previous one if you choose to go backward in time). It applies the DoG detector (described in the first tutorial) on this
neighborhood, which yields several detections (green circles). The detections that are found outside of a search radius
(white, dashed circle) are not considered. Detections inside the search radius but with a low quality are discarded as
well. The tracker therefore select the detection with a sufficiently large quality inside the search radius. If there is
more than one suitable detection, it selects the one with the highest quality. A new spot is created at this location, with
the same radius that of the source spot. If the source spot is not a sphere but an ellipsoid, the smallest radius of the
ellipsoid is taken. The newly created spot is then linked to the source spot. This is then repeated for the next time-point
(or previous one), using the new spot as initial spot in the same process. If no suitable detections are found within the
search radius, the tracker stops, and the reason is printed in the tracker log window.

The configuration panel controls the parameters of this process.

• Setup ID specifies what channel (or setup in case you have a multi-view dataset) that will be used for the
detection.

• Quality factor specifies the threshold on quality below which we reject detections. This threshold is ex-
pressed in fraction of the source spot quality. For instance if the source spot quality is 60 and the Quality
factor is 0.5, detections with a quality lower than 30 will rejected. If the source spot has no quality value (it
was added manually), this parameter is ignored and all quality values are accepted.

• Distance factor specifies the search radius, in units of the source spot radius. For instance, for a value of 2.5,
only detections that are within 2.5 times the radius of the source spot will be considered. Again, if the source
spot is not a sphere but an ellipsoid, the smallest radius of the ellipsoid is taken.

• N time-points specifies the number of time-points after which to stop.

• Tracking direction lets you specify whether you want tracking to happen forward or backward in time.

If you see that the tracker often stops with a message stating that it could not find a suitable candidate within search
radius, try to either decrease the value of the Quality factor or increase the value of the Distance factor.

54 Chapter 1. Table of content.

Mastodon

1.5.3 Tracker behavior with existing annotations.

The next parameters below the Existing spots category configure how the tracker deals with existing annotations. They
change the behavior described in the previous section. Indeed, before running the DoG detector on the neighborhood,
the tracker first searches for an existing spot within the search radius. If it finds one, it does not run the DoG detection,
but links to the existing spot (called target spot later) or not, depending on the following parameters.

If the Allow linking to an existing spot checkbox is deselected, the tracker stops. If it is selected, the tracker
will link to the target spot, provided it has no links already. However, the next 3 parameters allow to add exceptions:

• Link even if target has incoming links

• Link even if target has outgoing links

• Continue tracking if source and target spots are already linked

Their selection have important consequences when you are tracking along existing spots. They are best exemplified by
several different use-cases.

1.5.4 Main use-cases for semi-automated tracking.

Tracking a subset of cells.

This is what we have been doing in the first section of this chapter. This does not require any special configuration and
the default tracking configuration called Forward will do. Here is an example of when this use-case can be useful.

Arianne Bercowski Rama and Laurel Ann Rohde (Segmentation Timing and Dynamics Laboratory, EPFL) are studying
the somatogenesis dynamics in the zebrafish embryo. They acquire long-term time-lapse movies of the development
of an embryo, with cellular resolution. For a project they wanted to follow a few cells of interest (a few dozens per
movie) and investigate the expression of a gene reporter as the cells moved along the zebrafish embryo. The nuclei
are all stained with a nuclear marker, so this fluorescence channel could be used for automated detection, but there are
thousands of cells. Instead, they relied on semi-automated tracking, selecting a the cells of interest in the first frames
of the movie, and tracking them to the end thanks to the semi-automated tracker.

Once the tracking was done, they used feature analysis to extract fluorescence intensity over time for each cell in the
gene reporter channel.

1.5. Semi-automated tracking. 55

Mastodon

Stitching small track segments.

The semi-automated tracker can be used with the same configuration to stitch small track segments, which follow the
same cell but are separated and spread in time. This might be caused linking with missing detections, and the situation
could resemble what is pictured below.

We can use the semi-automated tracker to connect them, and add the missing detections. We want the tracker to create
spots for the cell in time-points when they are missing, and to connect to existing ones it will find by following the cell.
To allow this, we must enable first the ‘Link even if target has outgoing links’ setting, so that the tracker
does not stop when it meets a spot that is at the beginning of a track segment. Second, we must enable the ‘Continue
tracking if source and target spots are already linked’ setting. If we do not, the tracker will stop after
connecting the first track segment it meets. Finally, we have to increase the value of the ‘N time-points’ parameter,
so that the tracker iterate through the full movie. After doing this and tracking for the first cell, we get a single track:

56 Chapter 1. Table of content.

Mastodon

Backtracking, branching on cell divisions.

Backtracking is particularly useful when creating lineages of cells that divide often in the movie. Another application
is in mapping differentiated cells at a late time-point, to the position of their progenitors at the beginning of the movie.
For this we typically starts from an empty annotation, select a cell of interest in a late time-point, and backtrack it to
its position in the beginning of the movie. The built-in configuration called Backtracking is made for this. If the cell
we backtrack divided several times during the movie, might be creating tracks for sibling cells. We want these tracks
to branch properly in case we meet the mother cell when it divides.

This is why we need to enable the ‘Link even if target has outgoing links’ setting, but no other. Suppose
we already have one track for a cell that divides, following the mother cell then one of the daughter cells. When we will
backtrack from the other daughter cell, late in the movie, we will meet the division point of the mother cell. There is an
existing spot there, just before the cell divides. It has already an outgoing link (to the first daughter we already tracked),
and we want to connect to it. Hence we enable the ‘Link even if target has outgoing links’ setting. Because
we want to stop tracking there (the rest of the track is good already), we do not enable any of the two other settings.

Sparse linking over dense spots.

1.6 The selection creator.

The automated detection process we use often generates a lot of spurious detections. In TrackMate we complemented
it by adding feature filters just after the detection step. In TrackMate UI it takes the shape of filter windows, where
the user can specify a feature and a threshold above or below which spots are rejected. The filters can be stacked to
generate a more stringent filtering. This approach is like fishing with a small-hole net, then throwing back unwanted
fishes to sea.

In Mastodon we take a somewhat different approach. We don’t have a filter interface, but instead work with a dedicated
tool called the selection creator that we describe it here. It works differently from the interactive selection we have
in TrackMate. Instead of manually clicking on spots or links, or drawing a selection rectangle in TrackScheme, you
will enter an expression that will be parsed to generate a selection. The expression uses a basic language that allows
translating criteria like select all spots that have an intensity larger than X and their links.

We thought this approach would be more convenient and powerful, and the selection is especially important in
Mastodon. Indeed:

1.6. The selection creator. 57

https://imagej.net/plugins/trackmate/

Mastodon

• You can create a selection to tag several data items that follow a certain criterion.

• The selection can be used as an input for the linking algorithms (see the getting started tutorial).

• The BDV views can be used to only show the selection you just created.

• The selection content can be inspected in the selection table and inspected with the grapher views.

1.6.1 The selection creator window.

We will be using the TRIF dataset from the cell tracking challenge for this tutorial. You can download it from Zenodo:

Download the .mastodon and the .xml files, and put them in the same folder. The image data is stored on the Pasteur
BDV-server and Mastodon will stream the data from there.

The selection creator tool can be called from the Plugins > Selection Creator menu, but is also a tab in the Preferences
window:

58 Chapter 1. Table of content.

https://doi.org/10.5281/zenodo.7296222

Mastodon

The window for the tool is very simple. It contains a text field for the expression, and another one that contains an
editable description. The Run button evaluates the current expression, which results in an error or in the selection being
modified. Several built-in examples are included, and there is a Help button that opens a document recapitulating the
expression syntax.

Expression are stored and saved with the same menu that for the settings (TrackScheme styles, BDV render settings,
etc). When you press the apply button, they are saved to a file in the .mastodon folder in your home folder, called
selectioncreatorexpressions.yaml. For instance:

>> pwd
/Users/tinevez/.mastodon
>> cat selectioncreatorexpressions.yaml

Vertices with a tag
--- !selectioncreatorsettings {name: Spots with 1 link in frame 25, expression:␣
→˓vertexFeature('Spot

N links') == 1 & vertexFeature('Spot frame') == 25, description: Spots with 1
link in frame 25.}

--- !selectioncreatorsettings {name: Vertices with 1 link minus those in frame 25,
expression: (vertexFeature('Spot N links') == 1) - (vertexFeature('Spot frame')

(continues on next page)

1.6. The selection creator. 59

Mastodon

(continued from previous page)

== 25), description: Vertices with 1 link minus those in frame 25.}

1.6.2 Selection based on spot feature values.

Let’s see how we can select spots based on numerical features. We will be mainly playing with the expression field.
First, in the top drop-down list, select the builtin example called X larger than 100, then click the Run button. This
should be displayed:

And in a BDV window, you should see that most of the spots have been selected, saved for a few.

60 Chapter 1. Table of content.

Mastodon

Let’s have a look at the expression we used. In the selection creator, you enter expressions that are evaluated for all
the data items. The expression must evaluate to a boolean answer: a true or false answer for each of the data item
currently in mastodon. In our example we have:

vertexFeature('Spot position', 'X') > 100.

The keyword vertexFeature is a function that will fetch numerical values from a spot feature, for all spots. The
arguments of this function are first, the feature name (Spot position) and second, the projection name X.

Indeed, many features aggregates several projections. A projection is a component of a feature that is always a real
scalar. For instance, the Spot position feature is composed of 3 projects: X, Y and Z. See the part on numerical feature
computation in the tutorial on the table views for more details. Anyway, we need to remember that the vertexFeature
function will return a scalar value for all spots, so it needs a feature projection to be specified.

In the last part of the expression, we have a boolean comparison resulting in a boolean result: > 100. (the dot only
stresses that 100 is floating point number). So with this expression, all the spots that have a X position larger than 100
will evalute to true with this expression, and therefore will be added to the selection.

We use thestrictly great than operator >, but any comparison operator would have worked:

• > strictly greater than

• < strictly smaller than

• >= greater than

• <= smaller than

• == equal to

• != different from

1.6. The selection creator. 61

Mastodon

This is the basis for the whole selection creator framework. You can enter any kind of mathematical expression based
on the keyword supported, and it will be turned in a selection if it evaluates to a boolean results.

1.6.3 Let’s make errors.

Because the selection creator accepts expressions that can be anything, it is likely that we will have error messages at
some point. Let’s spend some time generating errors on purpose.

First let’s try removing the comparison:

vertexFeature('Spot position', 'X')

If we click the Run button we get the following error message:

Evaluation failed. Got unexpected result:
VertexFeature(Spot position → X, 256609)

This is expected. The selection creator expects expressions to evaluate to booleans. When we removed the comparison
operator (< 100.) we returned the X position for the 256609 spots in the model, and the selection creator does not
know how to turn this into a selection. So we need to remember that we always need to use expressions that evaluates
to booleans.

Let’s test an expression without specifying the projection name in the vertexFeature function:

vertexFeature('Spot position') > 100.

Now we get:

Evaluation failed. Incorrect syntax: Calling vertexFeature:
The projection key 'Spot position' is unknown to the feature
'Spot position'.

Here the selection creator complains because we did not specify the projection in the call. It then tried to find a
projection with name identical to the feature name (Spot position) and could not find one. So it complained. We
would get the same error message if we tried calling the function with the name of a projection that does not exist. For
instance vertexFeature('Spot position', 'U') > 100.

A similar error would be triggered when calling a feature that does not exist. For instance:

vertexFeature('Tralala', 'X') > 100.

returns the error message:

Evaluation failed. Incorrect syntax: Calling vertexFeature: The
feature 'Tralala' is unknown to the feature model.

Importantly, the same error message is triggered when you call the function with a feature that has not been computed
yet. For instance, in the Mastodon file you just downloaded, all feature are computed exccept one: Track N spots.
If we try to select short tracks with the valid expression that follows:

vertexFeature('Track N spots') < 20

we would get the same error message (feature unknown). To fix this, you need to go to the Feature computation
tool, make sure the Track N spots feature computer is selected and click Compute. After this, the expression will
evaluate to a selection correctly:

62 Chapter 1. Table of content.

Mastodon

Evaluation successful. Selection has now 33316 spots and 0 edges.

1.6.4 Selection with link features.

We can of course run the same kind of expression with link features. For this we use another function: edgeFeature.
But the principles are the same. For instance, to select all the links that correspond to a cell displacement larger than
3 µm, we write the following:

edgeFeature('Link displacement') > 3.

which results in:

Evaluation successful. Selection has now 0 spots and 16855 edges.

Note that in this case we called the function with only one function, the feature name. This worked because this feature
has exactly one projection. In that case the function understands that it needs to return the values of this sole projection.

1.6.5 Why are the functions called vertexFeature and edgeFeature?

In the Mastodon application we deal with data items called spots and links. The data model of Mastodon is a math-
ematical graph in which a cell in one frame is a vertex. The same cell in the next frame is another vertex, and the
two vertices are connected by an edge. Tracks are built by all the vertices connected by edges. Spots and links are
specialized versions of the vertices and edges of the graph used in the Mastodon application. But the selection creator
is built for any kind of graph that uses the Mastodon API, not only the one in the application we document here. For
this reason, the syntax of the functions adopted the most general terms: vertex and edge, but for us, they points to
features of spots and links.

1.6.6 Building selection based on tags.

We can also use tags in our expressions. The main function to do so is tagSet. It returns the tags of the specified
tag-set for all the spots and links. To create a selection from them, you simply need to check what ones are equal to a
certain tag with the equality == operator. For instance the expression:

tagSet('Reviewed by') == 'JY'

will retrieve all the tags in the tag-set called Reviewed by, and data items (spots and links) that are tagged with JY in
this tag-set will be selected. But with our current Mastodon project it returns an error:

Evaluation failed. Incorrect syntax: The tag-set 'Reviewed by' is
unknown to the tag-set model.

Indeed, the tag-set Reviewed-by does not exist.

The function tagSet returns spots and links altogether. If you want to retrieve only the spots or only the edges sepa-
rately, there are two functions: vertexTagSet and edgeTagSet. Otherwise they work like the tagSet function and
can be substituted with the same syntax.

There are also special switches to return data items that have no tag in a tag-set or that are tagged with anything in a
tag-set.

• ~tagSet('Reviewed by') will return all the data items that are tagged with any tag in the Reviewed by
tag-set. It matters not what tag, but there must be one.

1.6. The selection creator. 63

Mastodon

• !tagSet('Reviewed by') is the converse: it will return all the data items that are not tagged in the Reviewed
by tag-set.

And of course, these two switches can be used with the vertexTagSet and edgeTagSet functions.

1.6.7 Combining expressions.

Since we use boolean expressions we can combine them using logic operator. The first ones are the and and or operators
& and |. For instance, to select all spots that have 1 link and that are in frame 25, we write the following:

vertexFeature('Spot N links') == 1 & vertexFeature('Spot frame') == 25

To select all spots that have 1 link or that are in frame 25, we use the | operator instead:

vertexFeature('Spot N links') == 1 | vertexFeature('Spot frame') == 25

There are other operators which functions have been extended to have a proper meaning with the selection creator. For
instance, the above expression is identical to select all spots that have 1 link, and adding the spots that are in frame 25.
So when it comes to selection, this works as in an addition, and we could write similarly:

vertexFeature('Spot N links') == 1 + vertexFeature('Spot frame') == 25

But we get an error:

Evaluation failed. Incorrect syntax: Improper use of the 'add'
operator, not defined for Integer and VertexFeatureVariable. Use
brackets to clarify operator priority.

Here the expression parser is confused due to the classical operation priority of the the + and - operators. We need to
use brackets to specify we operate on the results of the feature filtering:

(vertexFeature('Spot N links') == 1) + (vertexFeature('Spot frame') == 25)

Evaluation successful. Selection has now 21814 spots and 0 edges.

The + operator gives the same results that the | operator, they just operate with different priorities.

The subtract operator - is used to remove data items from a selection. As for the + operator, it needs brackets to
operate properly. For instance, to remove the spots that belong to the frame 25 from the selection of spots that have 1
link, we write:

(vertexFeature('Spot N links') == 1) - (vertexFeature('Spot frame') == 25)

Evaluation successful. Selection has now 19397 spots and 0 edges.

And of course, you can combine expressions using features or tags:

(vertexFeature('Spot N links') == 1) - (tagSet('Reviewed by') == 'JY')

64 Chapter 1. Table of content.

Mastodon

1.6.8 Editing the selection.

Let’s say you already have a selection, and want to alter it with an expression. There are 3 functions that return the
content of the current selection and let you modify it. As such, they are not exacly functions, but can be considered as
variables in an expression.

The selection variable simply returns the list of data items that are currently selected. It can then be combined with
another expression. For instance, to remove from the selection all the spots that have 2 links, use this expression:

selection - (vertexFeature('Spot N links') == 2)

Of course, because running it will modify the selection, such expressions might have different outcome if you run it
several times in a row.

The vertexSelection and edgeSelection variables work like their selection counterpart, but are limited to return
only the spots, respectively the links, of the current selection.

1.6.9 Morphing a selection.

All the expressions we have seen above works like a boolean operation on an array. Except that in our case we have
spots and links, and that each have their own separated set of features. This separation is problematic if we want to
create selection of spots based on the features of their links, or if we want to include in the selection the links of the
spots we selected. To workaroudn this, the selection creator ships the morph function.

The morph function is a bit special as it is able to change the type of data items that are selected, based on their relations.
It is with this function that you will select the links of a spot. For instance:

morph(vertexSelection, 'incomingEdges')

will select the incoming links of the spots currently in the selection. The vertices themselves will not be included in
the final selection.

The morph function need two inputs:

• a selection (it can result from tagSet('TS') == 'A', vertexFeature('F', 'FP') > 3, selection, . . .);

• a list of tokens that specify how to morph the selection.

In the above example, the token was incomingEdgeswhich takes all the incoming links of the spots currently selected,
and nothing else (not even the spots initially selected). The supported morph tokens, or morphers are the following:

• toVertex includes the spots currently selected in the morph result. When this morpher is not present, the
selected spots are removed from the target selection.

• incomingEdges includes the incoming links (backward in time) of the selected spots.

• outgoingEdges includes the outgoing links (forward in time) of the selected spots.

• toEdge includes the links of the source selection in the target selection. When this morpher is not present, the
selected links are removed from the target selection.

• sourceVertex includes the source spots of the selected links. The source spot of a link is the one backward in
time.

• targetVertex includes the target spots of the selected links. The target spot of a link is the one forward in time.

• wholeTrack includes the whole track of the selected spots and links.

You can combine several morphers, if you put them as a list between brackets. For instance:

1.6. The selection creator. 65

Mastodon

morph(vertexFeature('Spot N links') == 3, ('toVertex', 'outgoingEdges'))

will select the spots that have 3 links, and return them plus their outgoing links.

1.6.10 Summary.

Functions and variables.

Function Usage
vertexFeature('Spot
feature name',
'Projection name')

Returns the values of the specified spot feature and projection. To be used with a
comparison operator on a numerical value like >, <, >=, <=, == or !=.

edgeFeature('Link
feature name',
'Projection name')

The same, but for link features.

tagSet('Tag set name') Returns the tag of all data items for the specified tag-set. To be used with
the equality operator ==, comparing to a tag belonging to the specified tag set
(tagSet('TS') == 'T').

vertexTagSet('Tag set
name')

The same, but only returns the spots in the comparison.

edgeTagSet('Tag set
name')

The same, but only returns the links in the comparison.

selection Returns the content of the current selection.
vertexSelection Returns only the spots in the current selection.
edgeSelection Returns only the links in the current selection.
morph Change the type of data items that are selected, based on their relations. To use

with the morphers described below.

Morphers.

Morpher
name

Effect

toVertex Include the spots currently selected in the morph result. When this morpher is not present, the selected
spots are removed from the target selection.

incomingEdgesInclude the incoming links (backward in time) of the selected spots.
outgoingEdgesInclude the outgoing links (forward in time) of the selected spots.
toEdge Include the links of the source selection in the target selection. When this morpher is not present, the

selected links are removed from the target selection.
sourceVertexInclude the source spots of the selected links. The source spot of a link is the one backward in time.
targetVertexInclude the target spots of the selected links. The target spot of a link is the one forward in time.
wholeTrack Include the whole track of the selected spots and links.

66 Chapter 1. Table of content.

Mastodon

1.7 Scripting Mastodon in Fiji.

With its integration in Fiji, Mastodon can be scripted in with the script editor using any of the scripting language there.
In the following, we will by using Jython, which is an implementation of Python 2 language.

The example script we will be using is this one and we will be detailing its section to document the supported functions
of Mastodon.

You can find a more comprehensive information on supported scripting functions in the scripting API reference, but it
is best starting with this tutorial.

1.7.1 The required import.

The header of a Mastodon script needs to contain the following:

#@ Context context

from org.mastodon.mamut import Mamut
import os

The scripting gateway of Mastodon is called Mamut and is located in the org.mastodon.mamut package. We chose
this name to underly that this application is based on the Mastodon libraries, and is similar to the MaMuT software but
with improved functionalities.

The gateway needs to have a Context object, ideally coming from the Fiji instance you are running. Thanks to the
ImageJ2 scripting API, this is done by adding a special “shabang” at the first line of the script: #@ Context context.
With this, the context variable will contain the context we need in Mastodon.

This is all we need. There is also an import for the os package so that we can manipulate file paths.

1.7.2 Creating a new project from a BDV file.

For this tutorial, we can use the small BDV file from the drosophila embryo we used in the first tutorial. You can find

it here:

Download the 3 files, and put them for instance on your Desktop folder. Creating a new Mastodon project from this
image file is simply done via the newProject function of the gateway:

bdvFile = os.path.join(os.path.expanduser('~'), 'Desktop', 'datasethdf5.xml')
mamut = Mamut.newProject(bdvFile, context)

logger = mamut.getLogger()
logger.info('File opened: %s\n' % bdvFile)
logger.info('Mamust instance: %s\n' % mamut)

with bdvFile being the path to a BDV XML file. If the file cannot be found, you will be shown an error window
stating that Mastodon will create the project with an empty image.

Otherwise, the mamut object does now contain everything we need to perform tracking and analysis on the image.

Mastodon has a logger instance that is used to send messages. By default it sends all messages in the Fiji console:

File opened: /Users/tinevez/Desktop/datasethdf5.xml
Mamust instance: org.mastodon.mamut.Mamut@10dcf50e

1.7. Scripting Mastodon in Fiji. 67

https://imagej.net/scripting/script-editor
https://github.com/mastodon-sc/mastodon-app/blob/master/scripts/MastodonExampleScript.py
https://imagej.net/plugins/mamut/index
https://doi.org/10.5281/zenodo.3336346

Mastodon

1.7.3 Basic cell tracking.

The mamut object we have has some functions that readily performs basic tracking. By basic, we mean that the default
algorithms are used with a minimal set of sensible parameters:

#--
Run default detection and linking algorithms.
#--

logger.info("\n\n-------------------------------------")
logger.info("\n Basic detection and linking")
logger.info("\n-------------------------------------\n")

Detect with the DoG detector, a radius of 6 and a threshold on quality of 200.
radius = 6.
threshold = 200.
mamut.detect(radius, threshold)
Link spots with the simple LAP tracker, with a max linking distance of 10, and␣
→˓forbidding gap-closing
max_linking_distance = 10.
gap_closing_n_frames = 0
mamut.link(max_linking_distance, gap_closing_n_frames)

You should get the following output:

Basic detection and linking

Detection with DoGDetectorMamut
Detection completed in 6.3 s.
There is now 1622 spots.
Particle-linking with SimpleSparseLAPLinkerMamut
Particle-linking completed in 0.2 s.
There is now 173 tracks.

Now we would like to see visually what are the results like. Because we are scripting in Fiji we can generate views like
in the GUI. This is done via the WindowManager gateway. For instance, to create a BDV view with the current project,
we write:

A new BDV window.
mamut.getWindowManager().createBigDataViewer()

You should see this window appearing:

68 Chapter 1. Table of content.

Mastodon

1.7.4 Configure tracking.

The detect() and link() methods use basic algorithms. You can configure tracking in depth using a dedicated
gateway, that called TrackMate (as you can see we did not go very far for names). We called it TrackMate, but it does
not have shared code with the TrackMate software. An instance of this gateway is created for a tracking session. It
offers methods to configure tracking and run the tracking. But first, let’s remove the results of the preceeding tracking:

Reset tracking data.
mamut.clear()

Creating the TrackMate gateway is done as follow:

trackmate = mamut.createTrackMate()

It can be used to print information on what detectors and linkers are present at runtime. This is important, as Mastodon
can be extended with 3rd party algorithms:

Print info on available detectors and linkers.
trackmate.infoDetectors();
trackmate.infoLinkers();

A large quantity of text should be printed in the log window. It gives information on the algorithms themselves, and on
the parameters they require.

1.7. Scripting Mastodon in Fiji. 69

Mastodon

Let’s pick and configure some algorithms. We will use the Advanced DoG detector, using a special feature it has.
This detector allows configuring what happens when it detects a cell in a location where there is already one detection.
It can replace the existing one, or let it in place. Parenthetically, this is a very interesting feature to harness complex
tissues with for instance different cell sizes depending on the location, or time. You could run a first detection with a
first radius, in a specific ROI. Then use this detector a second time in another ROI with another radius. Even if there
are some overlap, this detector will be able to avoid creating conflicts or duplicate detections. In this case here it is not
super interesting, as we just cleared the previous results.

Selecting and configuring this detector is done as follow:

Configure detection.
trackmate.useDetector("Advanced DoG detector");
trackmate.setDetectorSetting("RADIUS", 8.);
trackmate.setDetectorSetting("THRESHOLD", 200.);
trackmate.setDetectorSetting("ADD_BEHAVIOR", "DONTADD");

We just configured the detector. The linker is still the default one. To print what is currently configured, you can call
the info() method on the TrackMate gateway:

Show info on the config we have.
trackmate.info();

We see this:

TrackMate settings:
org.mastodon.tracking.mamut.trackmate.Settings@50387161:
- sources: [bdv.viewer.SourceAndConverter@2521e039]
- detector: class org.mastodon.tracking.mamut.detection.AdvancedDoGDetectorMamut
- detector settings: @407185223

- DETECTION_TYPE = null
- THRESHOLD = 200.0
- MIN_TIMEPOINT = 0
- RADIUS = 8.0
- ADD_BEHAVIOR = DONTADD
- ROI = null
- MAX_TIMEPOINT = 31
- SETUP = 0

(continues on next page)

70 Chapter 1. Table of content.

Mastodon

(continued from previous page)

- linker: class org.mastodon.tracking.mamut.linking.SimpleSparseLAPLinkerMamut
- linker settings: @742562126

- MAX_FRAME_GAP = 2
- MIN_TIMEPOINT = 0

etc.

The linker is configured in the same way. You need to call the

useLinker('linkerName')

function, with linkerName being the name of the linker you want, that can be obtained with the infoLinkers()
function.

The function

setLinkerSetting('key', 'value')

is used to set parameters, again using the list of parameters that can be found in the infoLinkers() output. In our
case we are satisfied with the default linker and parameters, so we can just run the tracking. This is simply done with:

Run the full tracking process.
trackmate.run()
Show results.
mamut.getWindowManager().createBigDataViewer()

We get results that are slightly different from the previous run, as we changed the detection radius.

1.7.5 Computing features.

Numerical features can be also computed via the script. As noted in a previous tutorial, only the features that take a
long time to compute have a ‘manual’ computer. You can get the list of computer as follow:

mamut.infoFeatures()

We get this:

Features that can be computed:
- 'Spot center intensity' - Computes the intensity at the center of spots by␣
→˓taking the mean of pixel intensity weigthted by a gaussian. The gaussian weights are␣

(continues on next page)

1.7. Scripting Mastodon in Fiji. 71

Mastodon

(continued from previous page)

→˓centered int the spot, and have a sigma value equal to the minimal radius of the␣
→˓ellipsoid divided by 2.0.
- 'Spot intensity' - Computes spot intensity features like mean,␣
→˓median, etc for all the channels of the source image. All the pixels within the spot␣
→˓ellipsoid are taken into account.
- 'Spot quick mean' - Computes the mean intensity of spots using the␣
→˓highest resolution level to speedup calculation.It is recommended to use the 'Spot␣
→˓intensity' feature when the best accuracy is required.
- 'Spot track ID' - Returns the ID of the track each spot belongs to.
- 'Track N spots' - Returns the number of spots in a track.
- 'Branch depth' - The depth of this branch in the track tree.
- 'Branch duration and displacement' - The displacement and duration of a branch.
- 'Branch N spots' - Returns the number of spots in a branch.

Again, this list is important. Mastodon can also be extended with 3rd party feature computers, so this list above
(which is what you see with the vanilla beta-26 Mastodon) will change depending on future developments and future
contributions.

To compute them we simply use the computeFeatures() function, with a list of names taken from the list above. For
instance

mamut.computeFeatures('Spot intensity', 'Spot center intensity')

We get the following simple messages:

Feature computation started.
Feature computation finished.

Now the features values are available. You get them with a table view, or directly in a text table using the echo()
method.

To display 2 tables with the first 10 spots and links:
mamut.echo(10)

72 Chapter 1. Table of content.

Mastodon

1.7.6 Selecting and editing the model.

We can now use these feature values to select data items, and then edit the model. The syntax for selection based
on feature values is the same that in the selection creator. Of course we must make sure the features we target are
computed to use them for selection. Also, as we are in a script, and because the selection creator uses strings to specify
the feature names, we must be cautious with quotes and double-quotes. For instance, to select the short tracks (fewer
than 10 spots), we write:

mamut.computeFeatures('Track N spots')
mamut.select("vertexFeature('Track N spots') < 10")

and we get:

Evaluation successful. Selection has now 173 spots and 0 edges.

To remove this spots, we now call:

mamut.deleteSelection()

Removed 173 spots and 117 links.

1.7.7 Tagging data items.

The selection can also be used to tag objects, exacly in the same way. But as now we do not have tag-sets defined in
the current mamut instance:

mamut.infoTags()

No tags are currently defined.

Creating tag-sets is done with the createTag() function. It accepts a list of strings. The first one must be the name
of the tag-sets, and the following list of strings are the tags within the tag-set. For instance:

We create a 'Fruits' tag-set, with 'Apple', 'Banana', 'Kiwi' as tags.
mamut.createTag('Fruits', 'Apple', 'Banana', 'Kiwi')
The same with a 'Persons' tag-set.
mamut.createTag('Persons', 'Tobias', 'Jean-Yves')

You can also set the colors of each tag, by specifying the R,G and B value of the color:

mamut.setTagColor('Fruits', 'Apple', 200, 0, 0)
mamut.setTagColor('Fruits', 'Banana', 200, 200, 0)
mamut.setTagColor('Fruits', 'Kiwi', 0, 200, 0)

Again, you need to specify first the tag-set name, then the tag, then RGB triplet. And now we get:

mamut.infoTags()

Tags currently defined: R G B
- Fruits:

- Apple [200, 0, 0]
- Banana [200, 200, 0]

(continues on next page)

1.7. Scripting Mastodon in Fiji. 73

Mastodon

(continued from previous page)

- Kiwi [0, 200, 0]
- Persons:

- Tobias [178, 245, 116]
- Jean-Yves [159, 98, 229]

Let’s use these tags in our instance. To tag data items, you need to first select them, then calling

tagSelectionWith('Tag-set name', 'Tag name')

For instance:

mamut.select("vertexFeature('Spot position' ,'X') > 100.")
mamut.tagSelectionWith('Fruits', 'Kiwi')

mamut.select("vertexFeature('Spot frame') == 25")
mamut.tagSelectionWith('Fruits', 'Banana')

mamut.select("vertexFeature('Spot N links') == 1")
mamut.tagSelectionWith('Fruits', 'Apple')

Clear selection.
mamut.resetSelection()

1.7.8 Showing and configuring views.

Let’s visualize the tags we just assigned in a TrackScheme window. We will again use the WindowManager gateway,
using a python dictionary to configure settings. We set the coloring mode to be a certain tag-set like this:

displaySettings = {'TagSet' : 'Fruits'}
mamut.getWindowManager().createTrackScheme(displaySettings)

74 Chapter 1. Table of content.

Mastodon

1.7.9 Undo and redo.

The undo and redo operations are also supported with scripting. But you have to set the undo points manully. The undo
points are ‘states’ of the data where you navigate back and forth with undo / redo. In GUI, they are set automatically,
but in the script, you need to specify them yourself. To illustrate it, we will need to remove a few spots, then undo this
operation.

Print some info on the model before we remove spots.
logger.info("Before:\n")
mamut.info()

Let's delete 500 spots.
it = mamut.getModel().getGraph().vertices().iterator()
for i in range(500):

if it.hasNext():
spot = it.next()
mamut.getModel().getGraph().remove (spot)

We mark this point as an undo point. Calling undo() / redo()
navigates in the stack of these undo points.
mamut.getModel().setUndoPoint()

This yields:

Before:
Data model #4
- mastodon project file: Not defined.

(continues on next page)

1.7. Scripting Mastodon in Fiji. 75

Mastodon

(continued from previous page)

- dataset: /Users/tinevez/Desktop/datasethdf5.xml
- objects: 1248 spots, 1202 links and 46 tracks.
- units: pixel and frame
After deleting some spots:
Data model #4
- mastodon project file: Not defined.
- dataset: /Users/tinevez/Desktop/datasethdf5.xml
- objects: 748 spots, 702 links and 46 tracks.
- units: pixel and frame

Now undoing this is simply a matter of calling undo()

mamut.undo()
logger.info("After undo:\n")
mamut.info()

After undo:
Data model #5
- mastodon project file: Not defined.
- dataset: /Users/tinevez/Desktop/datasethdf5.xml
- objects: 1248 spots, 1202 links and 46 tracks.
- units: pixel and frame

And redoing it:

mamut.redo()
logger.info("After redo:\n")
mamut.info()

After redo:
Data model #5
- mastodon project file: Not defined.
- dataset: /Users/tinevez/Desktop/datasethdf5.xml
- objects: 748 spots, 702 links and 46 tracks.
- units: pixel and frame

1.7.10 Saving a Mastodon project.

Saving to an existing Mastodon file is done with the save() method. But the project we created since the beginning
of this tutorial has never been saved:

mamut.save()

Indeed, we get an error message:

Mastodon file not set. Please use #saveAs() first.

We need to provide a path for a new Mastodon file. This is done with the saveAs() method:

newMastodonFile = os.path.join(os.path.expanduser('~'), 'Desktop', 'test_scripting.
→˓mastodon')
mamut.saveAs(newMastodonFile)

76 Chapter 1. Table of content.

Mastodon

From now on, any call to save() will save to this file.

Saving to /Users/tinevez/Desktop/test_scripting.mastodon

1.7.11 Reloading a Mastodon project.

Again, nothing complicated. We need to use the Mamut gateway again:

existingMastodonFile = os.path.join(os.path.expanduser('~'), 'Desktop', 'test_scripting.
→˓mastodon')
mamut2 = Mamut.open(existingMastodonFile, context)
mamut2.info()

Data model #7
- mastodon project file: /Users/tinevez/Desktop/test_scripting.mastodon
- dataset: /Users/tinevez/Desktop/datasethdf5.xml
- objects: 748 spots, 702 links and 46 tracks.
- units: pixel and frame

1.7. Scripting Mastodon in Fiji. 77

Mastodon

1.8 Moving around in the BDV views.

Action Key
View.

Move in X &
Y.

Right-click and Drag.

Move in Z. Mouse-wheel. Press and hold Shift to move faster, Control to move slower.
Align with XY
plane

Shift Z

Align with YZ
plane

Shift X

Align with XZ
plane

Shift C or Shift A. For these 3 shortcuts, the view will rotate around the mouse position on the
BDV.

Zoom / Un-
zoom.

Control+ Shift+ Mouse-wheel or Command+ Mouse-wheel. The view will zoom and unzoom
around the mouse location.

Time-points.

Next time-
point.

] or M

Previous time-
point.

[or N

Bookmarks.

Store a book-
mark.

Shift B then press any key to store a bookmark with this key as label. A bookmark stores the
position, zoom and orientation in the view but not the time-point. Bookmarks are saved in display
settings file.

Recall a book-
mark.

Press B then the key of the bookmark.

Recall a book-
mark orienta-
tion.

Press O then the key of the bookmark. Only the orientation of the bookmark will be restored.

Image dis-
play.
Select source
1, 2 . . .

Press 1 / 2 . . .

Toggle fused
mode.

Press F. In fused mode, several sources are overlaid. Press Shift + 1 / Shift + 2 . . . to add /
remove the source to the view. In single-source mode, only one source is shown.

Save / load
display set-
tings.

F11 / F12. This will create a XYZ_settings.xml file in which the display settings and bookmarks
will be saved.

Before mid-2023, the brightness and source visibility dialogs were configured in dialogs which visibility were toggled
with the F and F6 shortcuts respectively. With the new version of BDV, they are configured with a side-pane in a BDV
window that can be toggled by placing the mouse ofther right part of the images:

78 Chapter 1. Table of content.

Mastodon

1.9 Editing spots and links in the BDV views.

See also the ‘Linking spots’ and ‘Manually adding spots and linking them’ sections in this tutorial.

Action Key
Adding, deleting and
modifying spots.
Add a new spot. Put the mouse at the desired position and press the A key.
Move a spot. Put the mouse inside a spot, press and hold space, and move the mouse to the desired

position.
Delete a spot. Put the mouse inside a spot and press D.
Change the radius of
a spot.

Put the mouse inside a spot and press Q (make it smaller) or E (bigger).Hold Shift to make
larger changes or Control for finer changes.

Adding and linking
spots.
Link one spot to an
existing one in the
next frame.

Put the mouse inside a source spot, and press and hold L.The viewer moves to the next
time-point and shows a preview of the link.Release the L key in the desired target spot. A
link is created from the source spot to the target spot.

Link one spot to an
existing one in the
previous frame.

Same procedure, but press Shift L.

Add and link to a spot
in the next frame.

Put the mouse inside a source spot, and press and hold A.The viewer moves to the next
time-point, creates a spot there and links it to the source spotWhile holding A, move the
new spot to the desired location, and release A.

Add and link to a spot
in the previous frame.

Same procedure, but press Shift A.

Toggle the auto-
linking mode.

Control L

Removing links.

Delete a link. Put the mouse over the link to delete and press D.
Selection editing.

Add a spot / link to
the selection.

Shift click on a spot or a link to add / remove it to / from the selection.

Clearing the selec-
tion.

Click on an empty place of the image.

Remove selection
content.

Shift delete

Undo / Redo.

Undo / Redo Control Z / Control Shift Z

1.9. Editing spots and links in the BDV views. 79

Mastodon

1.10 Moving around in the TrackScheme views.

Action Key
View.

Move around. Right click and Drag or with the trackpad.
Zoom / unzoom in X. Shift Mouse-wheel
Zoom / unzoom in Y. Control Mouse-wheel
Zoom / unzoom in X & Y. Control Shift Mouse-wheel
Full zoom, full unzoom. Press Z .The view zoom at max level to the mouse location.Press Z again to unzoom

fully.
Zoom in a box. Press and hold Z then drag a box.The view will zoom to the box.

1.11 Editing spots and links in the TrackScheme views.

Action Key
Editing spots.

Remove a spot. Press D with the mouse inside the spot to remove.
Edit the label of a spot. Press Enter when a spot is focused, then enter its label and press Enter to validate.
Creating links between
spots.
Create a link between two
spots.

Press and hold L with the mouse inside the source spot. Release L when inside the
target spot.

Remove a link. Press D with the mouse on the link to remove.
Selection editing.

Add a spot / link to the se-
lection.

Shift-click on a spot or a link to add / remove it to / from the selection.

Select all in a box. Click and drag a box.Shift-click and drag to add the content of the box to
the current selection.

Clearing the selection. Click on an empty place of the image.
Remove selection content. Shift-delete.
Undo / redo.

Undo. Control-Z.
Redo. Control-shift-Z.

80 Chapter 1. Table of content.

Mastodon

1.12 Shortcuts for the table views.

Action Key
Navigation.

Move from row to row. ↓ and ↑
Move column to column ← and →
Jump to next / previous table. Control / Control
Editing.

Edit spot label F2 when the focus is in the spot label column.
Toggle tag space when the focus is in the desired tag column
Selecting.

Add next / previous row to selection Shift ↓ / Shift ↑
Add range to selection Shift and Shift
Toggle row into selection Control Left-click or Command Left-click

1.13 Navigation through lineages in BDV and TrackScheme views.

In BDV and TrackScheme views, the focused spot is the last one selected.

Action Key
Navigation with the Focus in BDV views.

Follow a spot across time within a track with the focus. ↓ and ↑
Jump to the beginning of another branch. Control Alt ↑
Jump to the end of another branch. Control Alt ↓
Navigation with the Focus in TrackScheme.

Follow a spot across time within a track with the focus. ↓ and ↑
Move the focus around from one track or one track branch to another (i.e. navigate to sibling). ← and →
Jump to the beginning of a branch. Alt ↑
Jump to the end of a branch. Alt ↓
Edit the label of the focused spot. Enter

1.12. Shortcuts for the table views. 81

Mastodon

1.14 Setting the selection.

Action Key
Setting selection.

Add a spot or link to the selection. Shift + Left-click.Do it again to remove a se-
lected spot or link from the selection.

Select all spots and links. Control A
Select just all the spots. Control Alt A
Select just all the links. Control Shift A
Select all the spots and links in the track of the currently
focused spot.

Shift space

Select all the spots and links upward (backward in time) in
the track of the currently focused spot.

Shift

Select all the spots and links downward (forward in time) in
the track of the currently focused spot.

Shift

Add the previous / next spot in time to the selection. Shift ↑ / Shift ↓
Add all spots to the selection from current spot to the begin-
ning of a branch.

Shift Alt ↑

Add all spots to the selection from current spot to the end of
a branch.

Shift Alt ↓

Add all spots to the selection from current spot to the begin-
ning of another branch.

Shift Control Alt ↑

Add all spots to the selection from current spot to the end of
another branch.

Shift Control Alt ↓

Selection in TrackScheme.

Add the spot to the left / right of the focus to the selection. Shift ← / Shift →
Draw a selection box Left-click Drag

1.15 Existing plugins

1.15.1 Mastodon Tracking

Automated tracking algorithms for Mastodon.

82 Chapter 1. Table of content.

Mastodon

1.15.2 Mastodon Pasteur

Small collection of plugins developed for the research led in the Institut Pasteur, Paris, but of general utility.

1.15.3 Mastodon Selection Creator

Mastodon plugin to create selections from mathematical expressions.

1.15.4 Mastodon Tomancak

Various Mastodon plugins for use in Tomancak lab projects

1.15.5 Ellipsoid Fitting

Mastodon plugin for fitting ellipsoids around spots

1.15.6 Mastodon Deep Lineage

A collection of plugins to analyse lineages of tracked objects in Mastodon, e.g. Lineage Tree Classification, Export of
ellipsoids as image, some more numerical features for Spots and BranchSpots. See the Mastodon Deep Lineage.

1.16 Mastodon Deep Lineage - a collection of plugins to analyse lin-
eages of tracked objects in Mastodon

1.16.1 Installation instructions

• Add the listed Mastodon update site in Fiji:

– Help > Update > Manage update sites

∗ Name: Mastodon

∗

docs/partC/doc/deep_lineage/installation/Mastodon.png

• Add the unlisted Mastodon Deep Lineage update site in Fiji:

– Help > Update > Manage update sites > Add Unlisted Site

∗ Name: Mastodon-DeepLineage

∗ URL: https://sites.imagej.net/Mastodon-DeepLineage/

1.16. Mastodon Deep Lineage - a collection of plugins to analyse lineages of tracked objects in
Mastodon

83

Mastodon

∗

docs/partC/doc/deep_lineage/installation/Mastodon-DeepLineage.png

1.16.2 Numerical Features added to Mastodon

Spot Features

Feature
name

Projections Description Formula/Visualisation

Spot Ellip-
soid

Short semi axes,
Middle semi axis,
Long semi axis

The ellipsoid semi
axes in ascending
order of length.

The semi axes are computed applying the square
root to the eigenvalues of the so-called covariance
matrix of the spots

Volume The volume of the el-
lipsoid.

$V=\frac{4}{3} \pi a b c$

Spot Ellip-
soid Aspect
Ratios

Aspect ratio short to
middle

The ratio between the
short axis and middle
axis.

$\frac{\text{short axis}}{\text{middle axis}}$

Aspect ratio short to
long

The ratio between the
short axis and long
axis.

$\frac{\text{short axis}}{\text{long axis}}$

Aspect ratio middle
to long

The ratio between the
middle axis and long
axis.

$\frac{\text{middle axis}}{\text{long axis}}$

Spot
Branch
ID

idem The ID of the branch
spot each spot belongs
to.

Branch-spot features

Fea-
ture
name

Pro-
jec-
tions

Description For-
mula/Visualisation

Branch
N
Leaves

idem The total number of leaves of a branch spot in the whole track subtree of this branch
spot.

Branch
N Suc-
cessor

idem Total number of successors of a branch spot in the whole track subtree of this branch
spot.

Branch
Sinu-
osity

idem Computes the sinuosity of a spot during its life cycle (cf. Sinuosity), i.e. how much the
track represented by the branch is curved. Values close to 1: almost straight movement.
Values significantly higher than 1: winding or meandering movement.

i.e.:

84 Chapter 1. Table of content.

https://en.wikipedia.org/wiki/Sinuosity

Mastodon

1.16.3 Lineage Tree Classification

• This plugin is capable of grouping similar lineage trees together.

• The similarity of a pair of lineage trees is computed based on the Zhang edit distance for unordered trees (Zhang,
K. Algorithmica 15, 205–222, 1996). This method captures the cost of the transformation of one tree into the
other.

• The cost function applied for the tree edit distance uses the attribute branch spot duration, which is computed as
a difference of time points between to subsequent divisions reflecting the start and the end of a spot’s lifetime.

• Thus, the linage classification operates on Mastodon’s branch graph.

• The Zhang unordered edit distance allows the following edit operations:

Note: The prefix T may represent a node or a complete subtree. Nodes without this␣
→˓prefix are just nodes.

1. Change label
A A'
/ \ -> / \

TB TC TB TC

2a: Remove subtree (opposite of 2b)
A A
/ \ -> |
TB TC TB

2b: Add new subtree (opposite of 2a)

A A
| -> / \
TB TB TC

3a: Remove subtree but keep one child (opposite of 3b)

A A
/ \ -> / \
B TC TD TC

/ \
TD TE (remove B and TE, keep TD)

3b: Convert existing subtree into child of a newly inserted subtree (opposite of 3a)
A A
/ \ -> / \
TB TC D TC

/ \
TB TE (insert D and TE, keep TB)

4a: Remove subtree (and siblings) but keep all children (opposite of 4b)
A A
/ \ / \

(continues on next page)

1.16. Mastodon Deep Lineage - a collection of plugins to analyse lineages of tracked objects in
Mastodon

85

https://doi.org/10.1007/BF01975866
https://doi.org/10.1007/BF01975866

Mastodon

(continued from previous page)

B TC -> TD TE
/ \
TD TE (Subtree B and it's sibling TC are removed, but the children

of B namely TD and TE are kept)

4b: Convert existing subtrees into children of a newly inserted subtree (opposite of␣
→˓4a)

A A
/ \ / \
TB TC -> D TE

/ \
TB TC (Subtree D and it's sibling TE are newly inserted,

TB and TC are kept as children of D)

• A basic example of the tree edit distance:

Tree1
node1(node_weight=13)

node2(node_weight=203) node3(node_weight=203)

Tree2
node1(node_weight=12)

node2(node_weight=227) node3(node_weight=227)

node4(node_weight=10) node5(node_weight=10)

• Edit distance of 69, because:

– one node has a difference of 1

– two nodes have a difference of 24 each

– two extra nodes are added with a weight of 10 each

– $\text{Zhang Tree Edit Distance}_{Tree1,Tree2} = 1 + 2 \times 24 + 2 \times 10 = 69$

• The tree edit distances are computed between all possible combinations of lineage trees leading to a two-
dimensional matrix. The values in this matrix are considered to reflect similarities of lineage trees. Low tree edit
distances represent a high similarity between a discrete pair of lineage trees.

• This similarity matrix is then used to perform an agglomerative hierarchical clustering into a specifiable number
of classes.

86 Chapter 1. Table of content.

https://en.wikipedia.org/wiki/Hierarchical_clustering

Mastodon

Parameters:

• Crop criterion:

– Time point (default)

– Number of spots

• Crop start

• Crop end

• Number of classes (minimum 2)

• Minimum number of divisions

• Similarity measure:

– Normalized Zhang Tree Edit Distance (default). $\frac{distance_{treeA,treeB}}{distance_{treeA,emptyTree}
+ distance_ {treeB,emptyTree}}$

– Per Branch Spot Zhang Tree Edit Distance. $\frac{distance_{treeA,treeB}}{numBranchSpotsA + num-
BranchSpotsB}$

– Zhang Tree Edit Distance as described in (Zhang).

• Linkage strategy for hierarchical clustering, cf. linkage methods

– Average (default)

– Single

– Complete

• Feature:

– Branch duration (default and currently only selectable feature)

• Show dendrogram of clustering

Example:

• Demo data: Example data set

– The demo data does not contain any image data.

– The spatial positions of the spots are randomly generated.

– When opening the dataset, you should confirm that you open the project with dummy images.

1.16. Mastodon Deep Lineage - a collection of plugins to analyse lineages of tracked objects in
Mastodon

87

https://doi.org/10.1007/BF01975866
https://en.wikipedia.org/wiki/Hierarchical_clustering#Cluster_Linkage

Mastodon

• The track scheme of the demo data containing 8 lineage tree in total. You may see that the “symmetric”,
the “ asymmetric” and the “single division” trees look similar to each other, but dissimilar to the other trees.

88 Chapter 1. Table of content.

Mastodon

• The lineage classification dialog.

1.16. Mastodon Deep Lineage - a collection of plugins to analyse lineages of tracked objects in
Mastodon

89

Mastodon

• The resulting dendrogram.

• The resulting tag set used for coloring the track scheme.

• The resulting tag set used for coloring the track scheme branch view.

90 Chapter 1. Table of content.

Mastodon

1.16.4 Label image exporter

• The Label image exporter is capable of saving a label image to a file using the existing ellipsoids in Mastodon.

• For the labels, the spot ids, branch spot ids or the track ids that correspond to the spots / ellipsoids may be used.
Since these Ids are counted zero based in Mastodon, an offset of 1 is added to all Ids so that no label clashes with
the background of zero.

• The recommended export format is ‘*.tif’-files. However, it should work also for other formats supported by
ImageJ.

• The export uses an image with signed integer value space, thus the maximum allowed id is 2.147.483.646.

• Exporter can be found here:

• The dialog:

– Label Id: The id that is used for the labels. The default is the Spot track Id.

∗ The ids correspond to the highlighted columns in the feature table:

1.16. Mastodon Deep Lineage - a collection of plugins to analyse lineages of tracked objects in
Mastodon

91

Mastodon

– Frame rate reduction: Only export every n-th frame. 1 means no reduction. Value must be >= 1.

∗ The frame number corresponds to the Spot frame column in the feature table.

– Save to: Path to the file to save the label image to.

Example:

• Demo data: Example data set

• The timelapse with the ellipsoids in BigDataViewer:

• The exported tif imported into Napari 3D view:

1.17 Mastodon data structures.

Before we discuss how to extend Mastodon with your own plugins, we need to learn a little bit about how Mastodon
stores and deal with the data it can visualize and edit. This page will walk you through the data structure in Mastodon
from a Java programmer perspective.

1.17.1 The data model.

All the data is aggregated in the ProjectModel class. This is the class you will access for instance when you write
a plugin, and it contains many things that relate to the image, the tracking data and the user-interface. We document
below its most important components.

Image data.

The image data is stored in a special class SharedBigDataViewerData. It aggregates several objects and information
from the BDV ecosystem. You can access the list of sources and the SpimData objects from it.

SharedBigDataViewerData imageData = projectModel.getSharedBdvData();
AbstractSpimData< ? > spimData = imageData.getSpimData();
List< SourceAndConverter< ? > > imageData.getSources();

92 Chapter 1. Table of content.

https://github.com/mastodon-sc/mastodon-example-data/tree/master/tgmm-mini
https://napari.org/stable/
https://github.com/mastodon-sc/mastodon/blob/master/src/main/java/org/mastodon/mamut/ProjectModel.java
https://github.com/mastodon-sc/mastodon/blob/master/src/main/java/org/mastodon/views/bdv/SharedBigDataViewerData.java

Mastodon

Tracking data, the Model class.

The tracking data, including the graph, the feature values, tags, etc. are stored in the Model class. This is the main
class to focus on to interrogate and manipulate tracking data.

Model model = mamutAppModel.getModel();

The model contains everything about the tracking data, from the individual objects, tracks, tags and numerical feature
values. It also controls the undo / redo mechanisms.

The tracking data. The ModelGraph class.

The tracks, that is the objects we follow, their shape and position, and how they evolve over time, are stored as a
mathematical graph. Precisely, the graph we use in Mastodon is a simple, directed graph: the edges have a direction,
and there is at most one edge between two vertices. The vertices of the graph are the objects we track: cells or organelles,
and they are represented by spots, described below. One spot, of the Spot class represents one cell or one object at
one time-point. The edges of the graph link objects over time. They are represented by the Link class, also described
below. Two spots s1 and s2 that represent the same cell at time-points t1 and t2=t1+1 are linked together by an edge
that goes from s1 to s2 labeled l1=s1→s2. The direction of the edge important. In Mastodon, the edges are always
oriented forward in time: the source spot of the edge is always in a time-points that is strictly lower than the target spot
of the edge. So there cannot be an edge oriented backward in time, and there cannot be an edge between two spots that
are in the same time-point.

The class of the graph we use in Mastodon is ModelGraph. It is based on a special data structure to manage large graphs
that we developed specifically for Mastodon, and described elsewhere in this documentation. The graph instance can
be obtained as follow:

ModelGraph graph = model.getGraph();

This graph class if often required by Mastodon algorithms and plugins, but is not the first entry point to browse and
navigate the data from a user point-of view. You can access the links of a spot directly with the spot class, and the
collections of spots in a time-point via the index.

The data objects. The Spot class.

The data objects are stored as spots with the Spot class. A spot is a 3D ellipsoid with a label and there methods in the
Spot class to access all these properties:

The Spot class implements ImgLib2 RealPositionable and RealLocalizable interfaces, so you will find:

• all the methods to access the position: localize(double[] pos), getDoublePosition(int d). This refers
to the center of the ellipsoid represented by the spot.

• conversely, all the methods to set the position: setPosition().

• The setLabel(String label) and / getLabel() are used for the spot label.

• setCovariance(double[][] cov) / getCovariance() to set or get the spot shape. As spots are ellipsoids,
their shape is controlled by a covariance matrix that controls the ellipsoid size and orientation.

• getTimepoint() to return the timepoint this spot belongs to. The time-point of a spot is set at construction (see
below) and cannot be changed.

Also, a spot is a vertex in the track graph (see below) and the Spot class has therefore methods to access the edges it
is connected to in this graph:

• edges() return all the edges attached to this spot, regardless of their direction.

1.17. Mastodon data structures. 93

https://github.com/mastodon-sc/mastodon/blob/master/src/main/java/org/mastodon/mamut/model/Model.java
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://github.com/mastodon-sc/mastodon/blob/master/src/main/java/org/mastodon/mamut/model/ModelGraph.java
https://github.com/mastodon-sc/mastodon/blob/master/src/main/java/org/mastodon/mamut/model/Spot.java
https://javadoc.scijava.org/ImgLib2/net/imglib2/RealPositionable.html
https://javadoc.scijava.org/ImgLib2/net/imglib2/RealLocalizable.html

Mastodon

• incomingEdges() returns the collection of edges that are incoming to the spot (for which this spot is the target
vertex).

• outgoingEdges() is the converse: it returns the collection of edges that are outgoing, that is, for which this
spot is the source vertex). The collection returned by edges() is the union of the collections returned by
incomingEdges() and outgoingEdges().

The Link class.

The index. The SpatioTemporalIndex and SpatialIndex classes.

The model maintains an index of the spots that are presents in each time-point, in the SpatioTemporalIndex class and
its implementation. You can get the index from the model with

SpatioTemporalIndex< Spot > index = model.getSpatioTemporalIndex();

The index class has a generic parameter: <Spot>. This just indicates that for the data model we deal with in the
Mastodon application, the objects we deal with are of the Spot class.

The main use of the index is to retrieve all the spots at one specific time-point:

// Retrieve all the spots in the 3rd time-point.
int tp = 2;
SpatialIndex< Spots > spatialIndex = index.getSpatialIndex(tp);

We get a SpatialIndex instance, which can be iterated over all the spots it contains:

for (Spot spot : spatialIndex)
{

// Do something with the spot.
}

The methods isEmpty() and size()methods can tell whether the collection is empty or its size. But the main interest
of this SpatialIndex class is that it offers efficient methods to query the spots that are in specified volume, or the
closest spots around a position. The method:

NearestNeighborSearch< Spot > nn = spatialIndex.getNearestNeighborSearch();

returns a class that can perform efficient nearest-neighbor search. Here is an example of its use:

import net.imglib2.RealPoint;

// ...

// Get the NN instance for this time-point.
SpatioTemporalIndex< Spot > index = model.getSpatioTemporalIndex();
int tp = 2;
SpatialIndex< Spots > spatialIndex = index.getSpatialIndex(tp);
NearestNeighborSearch< Spot > nn = spatialIndex.getNearestNeighborSearch();

// Search the closest spot to a position.
// (We use a RealPoint. It could have been a Spot since a Spot is a RealLocalizable.)
RealLocalizable pos = new RealPoint(1.2, 5.6, 7.8);

(continues on next page)

94 Chapter 1. Table of content.

https://github.com/mastodon-sc/mastodon-graph/blob/master/src/main/java/org/mastodon/spatial/SpatioTemporalIndex.java

Mastodon

(continued from previous page)

// Perform the search
nn.search(pos);

// Get search results.
Spot target = nn.getSampler().get();
double distance = nn.getDistance();

The SpatialIndex class can also return a IncrementalNearestNeighborSearch, which also perform nearest-
neighbor search, but can be iterated to return the N closest spots to a position.

1.18 Creating custom plugins in Mastodon.

Here we introduce how to write your own plugins in Mastodon.

A Mastodon plugin is a piece of code that implements a functionality that you can define and distribute, without
depending on editing the core of Mastodon code, or on any action from the core developers. We built the plugin
system and documented it so that extending Mastodon can be done without the core developers intervention, or even
without us knowing about it. To achieve this, we rely on SciJava. This core library offers a very simple and efficient
plugin discovery mechanism. WIth it, you can write some code in Java, compile it in a jar file, drop the jar file in
Fiji, and Mastodon will automatically pick it up, and integrate the functionality it ships. As an example, all TrackMate
components use the same mechanism, making it fast and easy to add new functionality to this software.

As opposed to other ways of extending Mastodon reviewed next, a Mastodon plugin is very generic. It can have any
goal that you envision, and does not have limitations in what you have access to. You can use a Mastodon plugin to
implement and import / export filter, a specific analysis tool, or a feature that edits the model.

1.18.1 The code template.

We will use and document a template file that is included in an example repository. You can clone it from:

https://github.com/mastodon-sc/mastodon-plugin-example

The simplest approach to start developing your plugin would be to simply edit this repository, changing its name, editing
the .java files and modifying the content of the pom.xml file. Maven will generate a .jar file that you can drop in
the Fiji.app/jars folder. Provided that this Fiji has Mastodon installed in it, the extensions you will develop within
this code will be discovered and integrated into Mastodon.

In the template you will see that there are several examples, each focusing on one of the multiple specific extensions of
Mastodon. Here we will just focus on the general plugin, for which an example is in the class:

src/main/java/org/mastodon/mamut/example/plugin/MastodonPluginExample.java

(Or online.)

This example creates a Mastodon plugin that, when called, simply displays a dialog showing the date and the number
of spots in the model. This class is fully annotated and commented, and can be read from top to bottom. We repeat
and precise here the information that you can find in the class and directly edit.

1.18. Creating custom plugins in Mastodon. 95

https://imagej.net/libs/scijava#plugin-framework
https://imagej.net/plugins/trackmate/#trackmate-components
https://imagej.net/plugins/trackmate/#trackmate-components
https://github.com/mastodon-sc/mastodon-plugin-example
https://github.com/mastodon-sc/mastodon-plugin-example/blob/main/src/main/java/org/mastodon/mamut/example/plugin/MastodonPluginExample.java

Mastodon

1.18.2 The plugin class hierarchy.

The class file starts with:

package org.mastodon.mamut.example.plugin;

...

@Plugin(type = MastodonPluginExample.class)
public class MastodonPluginExample implements MamutPlugin
{

...

The interface to implement.

The class implements the interface org.mastodon.mamut.plugin.MamutPlugin, which name and package can
be surprising at first. Indeed, in the code base, we tried to separate the common, general code that implements the
Mastodon technology, from the user application also termed ‘Mastodon’, that is currently shipped in Fiji. The Mastodon
application is a Fiji end-user tool that focuses on tracking cells and building lineages in large 3D+T images. But the
Mastodon API could be used to build other scientific applications, not necessarily focused on tracking, or focused on
tracking, but using another data model.

The code that provides the general, underlying functionality of Mastodon is placed in the org.mastodon package. The
code that is specific to the Mastodon application is placed in the org.mastodon.mamut package. This part is specific
to a data model class org.mastodon.mamut.model.Model, based on Spot and Link. This model class is at the core
of Mastodon data structure, and was surveyed in the previous page. The classes specific to this application often have
a Mamut in their name, as in the plugin interface we extend below.

Suggested package.

In this example we deal with a plugin specific to the Mastodon application, so we recommend using the prefix org.
mastodon.mamut for its package. Then add as sub-package the part specific to the feature you implement.

The @Plugin annotation.

The @Plugin annotation you see in the line just above the class declaration is used by Mastodon to automatically
discover your plugin at runtime. This is the medium of the SciJava discovery mechanism. If you do not add it, Mastodon
will not find the plugin and it won’t be usable in the application. In the type = XXX.class you simply need to put
the name of the current class.

1.18.3 The plugin interface methods.

The interface only defines 4 methods, with only the first one mandatory. But of course it is sensible to implement all
of them to present a nice integration to the user.

1. Passing the data to the plugin:

public void setAppPluginModel(final ProjectModel projectModel)

2. Declaring to Mastodon what actions are contained in the plugin class:

96 Chapter 1. Table of content.

https://github.com/mastodon-sc/mastodon/blob/master/src/main/java/org/mastodon/mamut/plugin/MamutPlugin.java

Mastodon

public void installGlobalActions(final Actions actions)

3. Inserting the actions in the Mastodon menu:

public List< MenuItem > getMenuItems()

4. Fine-tuning the action names displayed in the menu.

public Map< String, String > getMenuTexts()

5. And finally, you can document for the user what each action does. This is not done through a method, but with
a specific inner class:

@Plugin(type = Descriptions.class)
public static class Descriptions extends CommandDescriptionProvider
{

...

We will now detail each.

1.18.4 Passing the data to the plugin.

This is done with the method setAppPluginModel(). It is only used by Mastodon to pass the project model (all the
important data) to the plugin. It is called only once, automatically after the image data and tracking data is loaded, and
before the user interface is displayed.

The project model has all the important project data, window manager, and tools to execute or show something. The
role of this method can be first to store it or pass it to the class that will actually perform the work. In this example, the
class that will do something is a named action, defined below in the code. It is a named action that we can instantiate
now, passing the project model in its constructor.

So the code for the first part of the class is the following:

package org.mastodon.mamut.example.plugin;

// All the imports.
...

@Plugin(type = MastodonPluginExample.class)
public class MastodonPluginExample implements MamutPlugin
{

/**
* The custom action. In our case, this is the piece of code that will run
* when the user will click on the plugin menu item or use the plugin
* shortcut.
*/
private MyMastodonAction action;

@Override
public void setAppPluginModel(final ProjectModel projectModel)
{

this.action = new MyMastodonAction(projectModel);
(continues on next page)

1.18. Creating custom plugins in Mastodon. 97

Mastodon

(continued from previous page)

}

...

1.18.5 The actual plugin logic.

The code for the action class MyMastodonAction can be defined in the same file. In this example we chose to imple-
ment AbstractNamedAction. It is a simple refinement of the core class AbstractAction, that stores a name for the
action. We will see that the action name is very important, and it needs to be unique for each action.

This MyMastodonAction class is where you would put the logic of your action. Depending on whether it is about
showing a dialog, starting an intensive computation or connecting to a server, the boilerplate code might change. Be
mindful for instance about the fact that as is, this code will run on the Event Dispatch Thread.

In our case we don’t mind, because the code we run is trivial. We want to count the number of spots currently in the
model. For this we need to access some of the project model component.

private static class MyMastodonAction extends AbstractNamedAction
{

private static final long serialVersionUID = 1L;

private final ProjectModel projectModel;

private MyMastodonAction(final ProjectModel projectModel)
{

/*
* This is where we specify the action name. We would
* normally recommend to put it in a String constant, at the
* beginning of the plugin class.
*
* By convention, action names are all lower case, with words
* separated by space. This name is what the user will see in the
* Keymap table of the Preferences dialog.
*/
super("my super mastodon plugin example action");

/*
* We simply store the project model instance.
*/
this.projectModel = projectModel;

}

/*
* The method below is called as many times as the user triggers the
* action. The `ActionEvent` parameter is not really useful to our case.
*/
@Override
public void actionPerformed(final ActionEvent e)
{

/*
* The data model is one component of the project model.

(continues on next page)

98 Chapter 1. Table of content.

https://javadoc.scijava.org/SciJava/org/scijava/ui/behaviour/util/AbstractNamedAction.html
https://docs.oracle.com/javase/tutorial/uiswing/concurrency/dispatch.html

Mastodon

(continued from previous page)

*/
final Model model = projectModel.getModel();

/*
* It contains the mathematical graph of all tracks.
*/
final ModelGraph graph = model.getGraph();

/*
* The graph has vertices, which are the spots, or cells, in our
* data.
*/
final int nSpots = graph.vertices().size();

/*
* Let's show this to the user.
*/
final Date now = new Date();
final String dateTxt = new SimpleDateFormat("YYYY-MM-dd HH:MM"␣

→˓).format(now);
final String message = "On " + dateTxt + ", there were " +␣

→˓nSpots + " spots.";
JOptionPane.showMessageDialog(null,

message,
"example Mastodon plugin",
JOptionPane.INFORMATION_MESSAGE,
MastodonIcons.MASTODON_ICON_MEDIUM);

}
}

1.18.6 Declaring the actions to Mastodon.

This is well and fine, but how are we going to let the user launch anything? We want to have something done when
the user triggers the plugin. How can we do that? This is done using the actions mechanism, used in our case with the
following method:

public void installGlobalActions(final Actions actions)

When a plugin is registered, it receives via the method above an Actions instance, reserved for plugins. We will see
how to use it, but these actions are simple mechanism to bind a shortcut or a menu item to something that runs.

But first a word on keyboard shortcut. Mastodon has a nice system to map actions to keyboard shortcuts and the let
the user modifies them. If you want to trigger your plugin via keyboard, you need to provide a default shortcut in the
method we detail below.

The syntax to specify a keyboard shortcut is simple, but has some gotchas about the accelerators and letters. It is a
good idea to check the supported syntax here:

https://github.com/scijava/ui-behaviour/wiki/InputTrigger-syntax

If you do not want your action to be callable directly from the keyboard, enter not mapped instead. If you want your
action to be callable by several shortcuts, enter them as an array of strings, as in:

1.18. Creating custom plugins in Mastodon. 99

https://javadoc.scijava.org/SciJava/
https://github.com/scijava/ui-behaviour/wiki/InputTrigger-syntax

Mastodon

String[] keyboardShortcuts = new String[] { "ctrl shift P", "ctrl shift Q" };

As coding style extremists we would recommend declaring the shortcut in a String constant declared in the beginning
of the class, so that it can be easily modified later.

We can declare our custom action we instantiated above in the following way:

actions.namedAction(theActionInstance, "the keyboard shortcut");

Note that this method only required the named action instance and the default keyboard shortcut (could be
"not mapped", but not null, nor something empty). The action name will be taken directly from the
AbstractNamedAction implementation, as seen in the previous paragraph.

In the end, the content of the method looks like this:

@Override
public void installGlobalActions(final Actions actions)
{

final String keyboardShortcut = "ctrl shift P";
actions.namedAction(action, keyboardShortcut);

}

Alright this is done! Now when the user will press the ctrl shift P keys, the actionPerformed() code of the
MyMastodonAction above will run.

Before we carry on: did you recognize you could declare several action within this plugin class? In this example, we
just made one, called MyMastodonAction, that is defined and instantiated above. Nothing prevents your from having
several implementations of AbstractNamedAction, each corresponding to a different action. You can repeat the call
to

actions.namedAction(action, keyboardShortcut);

with each of them, and have several actions declared in the same plugin class. A Mastodon plugin mainly contains
the logic for the declaration of one or several actions to be run, rather than the action itself.

100 Chapter 1. Table of content.

Mastodon

1.18.7 The action descriptions.

We could stop here.

We have a plugin class, that instantiate an action, declares it into the Actions bundle, and binds it to a specific shortcut.
We have some code and a way for the user to trigger it.

But 1/ it does not have a description and 2/ what if you want to put thisaction into the Mastodon menu? Let’s address
the first point.

Mastodon lets the user redefine keyboard shortcuts as they please. This is done in the Preferences dialog, in the Keymap
section. This page shows a description for each action and this description is specified with the mechanism below. This
is not mandatory, but Mastodon will complain if it cannot find a description for the new actions you create, so . . .

To inform Mastodon of descriptions, we basically extends a specific class, and annotate it so that it can be discovered
at runtime. This is exactly the same discovery mechanism used in the plugin above, except that it is a different type,
hence, usage. Because the descriptions live in a specific class, they could be in a separate file. But it is more convenient
this way. So we can add the following piece of code to our MastodonPluginExample:

@Plugin(type = Descriptions.class)
public static class Descriptions extends CommandDescriptionProvider
{

public Descriptions()
{

/*
* A quick word on scopes and contexts for keyboard shortcuts. If
* you do not know nor care, simply use the same syntax as below.
*
* It is possible that there are several applications in the same
* process that use the same plugin mechanism. For instance the
* BigDataViewer and Mastodon, both in Fiji. To sort descriptions
* and shortcuts according to the right scope and context, we␣

→˓need
* to declare our scope and context in the constructor.
*
* The scope relates to the application itself. In our case we␣

→˓use
* `KeyConfigScopes.MAMUT` and it will be the same for all your
* Mastodon plugins.
*
* The context relates to what part of the application the␣

→˓shortcut
* is used in. For instance you could define an action that only
* runs within the TrackScheme view. In that case you will use␣

→˓the
* `KeyConfigContexts.TRACKSCHEME` context.
*
* To signal that the action can be run everywhere in Mastodon,␣

→˓use
* the global `KeyConfigContexts.MASTODON` context.
*/
super(KeyConfigScopes.MAMUT, KeyConfigContexts.MASTODON);

}

@Override
(continues on next page)

1.18. Creating custom plugins in Mastodon. 101

Mastodon

(continued from previous page)

public void getCommandDescriptions(final CommandDescriptions␣
→˓descriptions)

{
/*
* We have to specify the action name and its default shortcut.␣

→˓This
* is why it would have been a good idea to specify them in a
* constant. Now we need to repeat them here.
*/
final String actionName = "my super mastodon plugin example␣

→˓action";
/*
* We must give an array of shortcuts, even if we only use one.
*/
final String[] keyboardShortcut = new String[] { "ctrl shift P" }

→˓;
/*
* The description itself. Make it user-friendly.
*/
final String description = "Displays a dialog showing the␣

→˓current number "
+ "spots in the data.";

/*
* And the method to pass the description to Mastodon. Notice it␣

→˓is
* somewhat parallel to the way we declare the actions in the
* `installGlobalActions()` method above.
*/
descriptions.add(actionName, keyboardShortcut, description);

/*
* This is enough to make the action appear in the Preferences
* dialog, in the Keymap section. For instance if you search for
* 'example', the action name should appear in the 'Command' column,
* with the key binding we defined.
*/

/*
* Again, if you have more than one action declared in this␣

→˓plugin
* class, simply repeat the method call above for each.
*/

}
}

102 Chapter 1. Table of content.

Mastodon

1.18.8 Inserting actions in the menus of Mastodon.

Let’s now see how to insert the action in the Mastodon menu. This is done via two methods, the first one to link a menu
item to an action, and the second one to give the menu item a user-friendly name.

Here is the method to create a menu item. We will add one that calls to our action there.

@Override
public List< MenuItem > getMenuItems()
{

/*
* To create the menu item, we use a utility method, that accepts the
* action name, and a menu path as a list of strings. To have the action
* executed when the menu item is clicked, it is enough to simply enter
* the action name.
*
* The following will put the action with the name: 'my super mastodon
* plugin example action' in the menu 'Plugins > Examples'.
*
* The name used in this method must match the name of the action, hence
* we kindly remind how adequate it would have been to declare it as a
* constant at the top of this class.

(continues on next page)

1.18. Creating custom plugins in Mastodon. 103

Mastodon

(continued from previous page)

*/
final String actionName = "my super mastodon plugin example action";
final MenuItem menuItem = MamutMenuBuilder.makeFullMenuItem(

actionName,
"Plugins", "Examples");

/*
* And new we can return this menu item in a list of 1 element. And if
* you had more than one action declared in this plugin, you can create
* several menu items for them, and return them in this method.
*/
return Collections.singletonList(menuItem);

}

This is great and well, but not pretty. The menu item in Mastodon is at the right place and does the right thing, but is
named my super mastodon plugin example action, which is the name of the action. The last method we will
see allows to customize the name of the menu item, and put something more meaningful to the user.

@Override
public Map< String, String > getMenuTexts()
{

/*
* This method returns a map String -> String, in which you can put the
* action name as key, and the desired text as value. For instance:
*/
final String actionName = "my super mastodon plugin example action";
return Collections.singletonMap(

actionName,
"Show N spots");

/*
* I will refrain from saying something about declaring the action name
* as constant in the top of this class for convenience. But now you

(continues on next page)

104 Chapter 1. Table of content.

Mastodon

(continued from previous page)

* should have in the 'Plugins > Examples' menu an item called 'Show N
* spots', and that launches the action.
*/

}

1.19 Custom simple numerical features in Mastodon.

In this example we show an example of a simple custom numerical feature in Mastodon. We take the simple example
of returning the angle of a link in the XY plane. The code corresponding to this part of the documentation is in the
same repository as the previous tutorial, in the package:

https://github.com/mastodon-sc/mastodon-plugin-example/blob/main/src/main/java/org/mastodon/
mamut/example/feature/

1.19.1 The versatility and verbosity of the numerical feature system in Mastodon.

As an introduction, we would like to give some context about the feature system in Mastodon. This is unrelated to
the programming tutorial, but maybe useful to understand the complexity we will deal with, and apologize a bit for it.
TrackMate and MaMuT - our previous works and the most similar to Mastodon - were focused on tracking. But we
already had recognized the utility of ‘numerical features’ for basic analysis and exploration, and the ability to extend
analysis by creating and adding new ones to these platforms. In TrackMate and MaMuT, the numerical feature system
has some strong limitations: you can only have features that return a single real number for a data item (spot or link).
In Mastodon we wanted to remove this limitation and have features returning any kind of objects, numbers, matrices
or text. We also wanted to avoid enforcing a specific implementation. Finally, we wanted to have for Mastodon a
reasonable approach when dealing with numerical feature for a very large number of data items. The price to pay for
this generality is the length and verbosity of the code required to implement a feature. Now that we want to implement
our own feature in Mastodon, we have to pay this price.

Somewhat fortunately, we also recognized this difficulty, and created a few facilities to accelerate feature development
for certain cases. For instance, in this example we want to develop a simple feature, that returns the angle of a link
in a XY plane, giving the instantaneous direction of displacement for a cell. For this we simply need a feature that

1.19. Custom simple numerical features in Mastodon. 105

https://github.com/mastodon-sc/mastodon-plugin-example/blob/main/src/main/java/org/mastodon/mamut/example/feature/
https://github.com/mastodon-sc/mastodon-plugin-example/blob/main/src/main/java/org/mastodon/mamut/example/feature/
https://imagej.net/plugins/trackmate/
https://imagej.net/plugins/mamut/index

Mastodon

returns a scalar real number for each link. We don’t even need to store them, and can compute it on the fly, avoiding
the need to create a feature computer and storing the values it returns. We will start with this simple case, that allows
for introducing the main concepts of the numerical feature system.

Nonetheless, even our simple example requires two classes to be functional:

1. A class to store feature values and decompose it, the Feature,

2. And a class to compute the feature values, the FeatureComputer. We will detail them one after the other.

1.19.2 The feature class.

The starting point is the feature class LinkXYAngleExampleFeature.java and we will start from there. As for the plugin
example this class is heavily commented but we repeat and extend these comments here.

The beginning.

A Mastodon feature is class that associates a value (numerical or not) to a data item (a spot or a link). Such classes
implement the org.mastodon.feature.Feature interface, with a type that specifies what data item they are defined
for. Because we want to compute something on links, our feature implements Feature < Link >. We will see below
the methods it specifies. So the header of our feature class is:

package org.mastodon.mamut.example.feature;

...
// All the imports.

public class LinkXYAngleExampleFeature implements Feature< Link >
{

We start by defining a few constants, that are used to declare the ‘signature’ or specifications of our feature: its name,
what type of values it returns, what is their units and dimension, etc.

Our feature needs a name, and we will use it repeatedly. So we declare it now in a constant. The feature name also
serves as a unique key, hence the name of the constant. It is a good idea to use something meaningful to the users.

private static final String KEY = "Link angle in XY plane";

We also have a means to pass some information to the user about what a feature is, and we also store this in a constant.

public static final String INFO_STRING = "Example feature that computes "
+ " the angle of a link in the XY plane.";

The role of feature projections.

Before going on, we need to speak a little bit about the notion of projections.

Since a feature can return any type of data, we needed a way to make use of them in Mastodon in some specific
situations, for instance to display feature values in a table, or use them in a color mode. For this we use projections.
A feature can return a value of any type, but we ask it to be ‘decomposable’ into scalar, real projections. A feature
projection returns a scalar real number for each data item, and a feature can be expressed as a collection of projections.
What we see in the Mastodon tables and what we use in color modes are the projections. Of course, it is only useful
for numerical features (number, matrices). Other feature types are specific enough to prompt for their own display. In
the examples of this repository, we only deal with numerical features.

106 Chapter 1. Table of content.

https://github.com/mastodon-sc/mastodon-plugin-example/blob/main/src/main/java/org/mastodon/mamut/example/feature/LinkXYAngleExampleFeature.java
https://github.com/mastodon-sc/mastodon/blob/master/src/main/java/org/mastodon/feature/Feature.java

Mastodon

The way a numerical feature is decomposed into projection is completely up to you. The decomposition does not have
to be complete, and it can be redundant. For instance, here we will just compute the angle of a link in the XY plane, but
in 3D it requires 2 scalar angles. In such a feature, you could use the polar angle and the azimuthal angle as projections.
Or the x, y and z coordinates a unit vector along the link. Or even return the 2 angles and the 3 components. To choose
the projections you need to think of the most direct way to use it in your track analysis pipeline.

In concrete implementations, we therefore need to give the specifications of the projections we will use, and pass
these projection specifications to the feature specifications (read below). In our case we just have one, and projection
specifications just need a projection name, and the dimension of the scalar value they return (in our case, an angle).
This is done with the FeatureProjectionSpec class, as below. Our feature is made of one real value, so we use only
one projection. For the projection name, we can reuse the feature name, since we have only one projection. This part
is then just:

public static final FeatureProjectionSpec PROJECTION_SPEC
= new FeatureProjectionSpec(KEY, Dimension.ANGLE);

The projection itself will be defined later in the code.

Feature specifications.

In Mastodon, features are discovered and integrated via their specification class. This specification is supposed to return
basic information about the feature content, before it is computed. Mastodon then uses it to sort features depending on
what they do.

To be integrated into Mastodon, each feature must implement and return a specification class, that inherits from
FeatureSpec< F, O > where F is the concrete feature class and O is the type of the data item the feature is defined
for. This can be done as below, using an inner public static class.

And as for the example plugin we have seen, we rely on the SciJava plugin mechanism for automatic runtime dis-
covery. Concretely this means you need to add the @Plugin(type = FeatureSpec.class) line above the class
declaration for Mastodon to discover and integrate your class.

@Plugin(type = FeatureSpec.class)
public static class Spec extends FeatureSpec< LinkXYAngleExampleFeature, Link >
{

public Spec()
{

super(
KEY, // 1. The feature name.
INFO_STRING, // 2. The feature info.
LinkXYAngleExampleFeature.class, // 3. The feature class.
Link.class, // 4. The class of the data item.
Multiplicity.SINGLE, // 5. The multiplicity.
PROJECTION_SPEC); // 6... The list of projection specs.

}
}

The specification class itself just need to pass a few arguments via the super constructor. In order:

1. The name or key of the feature, which must be unique. By convention we choose user-friendly name, starting
with the data item the feature is defined for, such as ‘Link angle in XY plane’.

2. The information for users, as a String.

3. The class of the feature. In our case it will just be LinkXYAngleExampleFeature.class.

4. The class of the data item the feature is defined for. In our case, Link.class.

1.19. Custom simple numerical features in Mastodon. 107

Mastodon

5. The multiplicity. The multiplicity is an enum that specifies whether the feature is defined once or twice per
channels in the image, or is independent from the the number of channels in the image. For instance, for features
the measure the mean intensity, we would use Multiplicity.ON_SOURCES, to signal that the feature needs to
be computed once per channel. In our case, the feature is independent from the image data and the number of
channels it contains. For this we use the Multiplicity.SINGLE flag.

6. A series or list of feature projection spec, one per projection defined in the feature. Since we have a scalar feature,
we will just put the one projection spec we created.

The next part of the code simply creates, stores and returns an instance of this feature specification class.

// Now we instantiate and keep and instance of this feature spec class.
public static final Spec SPEC = new Spec();

// And we return it in this method, specified by the 'Feature<>' interface.
@Override
public Spec getSpec()
{

return SPEC;
}

108 Chapter 1. Table of content.

Mastodon

Implementing the feature projection.

Now we can code and instantiate the projection. Here is the feature projection class. It implements
FeatureProjection< Link > that specifies a bunch of methods related to getting a scalar value for each link. Be-
cause it is compact, we chose to put it in an inner class within the feature class.

In our case, since we do the computation on the fly, this is where the computation logic is.

private static final class MyProjection implements FeatureProjection< Link >
{

/*
* This should return a key for 'projection'. We use a special class for
* this, used to facilitate manipulating a collection of projections
* elsewhere in Mastodon.
*/
@Override
public FeatureProjectionKey getKey()
{

return FeatureProjectionKey.key(PROJECTION_SPEC);
}

/*
* This method below is used to indicate to Mastodon that a value exist
* for the specified data item, and *that this value is valid*. In our
* case, because we compute values on the fly, they always exist and are
* always valid.
*/
@Override
public boolean isSet(final Link link)
{

return true; // Always set, always valid.
}

// The logic that computes the value.
@Override
public double value(final Link link)
{

// The source of the link (where it starts from).
final Spot source = link.getSource();
final double xs = source.getDoublePosition(0);
final double ys = source.getDoublePosition(1);

// Its target (where it points to).
final Spot target = link.getTarget();
final double xt = target.getDoublePosition(0);
final double yt = target.getDoublePosition(1);

final double dx = xt - xs;
final double dy = yt - ys;

return Math.atan2(dy, dx);
}

(continues on next page)

1.19. Custom simple numerical features in Mastodon. 109

Mastodon

(continued from previous page)

// The units.
@Override
public String units()
{

return Dimension.RADIANS_UNITS;
}

}

Back in the feature class, we need a field to store the instance:

/*
* This is the instance of the projection we will use to return the scalar
* real values. It is defined below and instantiated in the feature constructor.
*/
private final MyProjection projection;

And when we instantiate the projection in the feature class constructor:

public LinkXYAngleExampleFeature()
{

this.projection = new MyProjection();
}

This is it for the computation. In our case it is very simple. It is somewhat daunting that such a simple computation
requires that many boilerplate code and specifications to be integrated in Mastodon. Again, the feature system ambitions
to address a very wide range of situations and means of computations. This generality is the source of this verbosity.

Invalidating values.

The next method in the Feature interface is important for features that store values. These features have a ‘computer’
class that handles the computation logic. The computer class is called by the user (in the ‘compute features’ dialog),
and when after it runs, the feature instance is created. The feature instance is then just used to store and return values.

But additionally, Mastodon has a mechanism to invalidate the values of the data items that are modified. Let’s take for
example the feature that stores the mean intensity in a spot. If the user moves a spot to another position, or change its
radius, the mean intensity value stored for this spot becomes invalid. When a user modifies a data item in such a way,
Mastodon automatically calls the method below, which is meant to discard the value the feature stores.

For our example where the computation is done on the fly, we don’t have to do anything.

@Override
public void invalidate(final Link link)
{}

110 Chapter 1. Table of content.

Mastodon

Returning projections.

The rest of the feature class is dedicated to returning the projections contained in the feature.

/*
* Here we should return the one projection we have if the specified
* projection key matches., or 'null' otherwise.
*/
@Override
public FeatureProjection< Link > project(final FeatureProjectionKey key)
{

if (projection.getKey().equals(key))
return projection;

return null;
}

/*
* Here we should return all the projections defined in the feature.
*/
@Override
public Set< FeatureProjection< Link > > projections()
{

return Collections.singleton(projection);
}

We could think our work is done. Alas! We still need to give Mastodon a way to create the feature. And this is done
in the feature computer. So the rest of the tutorial is in the LinkXYAngleExampleFeatureComputer class, and here
you will see that it is the class that calls the constructor of this feature.

1.19.3 The feature computer class.

We know describe the LinkXYAngleExampleFeatureComputer.

This class is part of the first tutorial on writing your own numerical feature for Mastodon. It discusses the computer
logic, which will be very simple in our example.

The separation of concerns in Mastodon is quite strong. In the previous class, we have seen the classes that are in
charge of storing the values of a feature. Though in our example it also contained the logic to compute these values, as
we wanted to have a ‘on the fly’ feature. Normally, the logic to compute a feature should be implemented in a feature
computer. Such a class is the one discovered by Mastodon, and is in charge of creating the feature and adding values to
it. It is normally the important one. This added verbosity and multiplication of classes gave us a wide berth as to how
features are defined and calculated. But again, we pay the price now.

However this class will be quite brief. Because for the XY angle the computation is done in the feature class, we just
have to instantiate it. To return the feature class to Mastodon, and receive the data required, a feature computer uses
the SciJava modifiable private field, annotated with the @Parameter tag, that we will explain below. If you never met
this technique before in Java, it will feel strange.

1.19. Custom simple numerical features in Mastodon. 111

https://github.com/mastodon-sc/mastodon-plugin-example/blob/main/src/main/java/org/mastodon/mamut/example/feature/LinkXYAngleExampleFeatureComputer.java

Mastodon

The MamutFeatureComputer interface.

The feature computer class itself needs to implement the MamutFeatureComputer interface. As for the plugin sys-
tem, it has a Mamut in its name to indicate that it is specific to the cell lineaging application. And as for the plugin
system, you need to annotate it by add the @Plugin(type = MamutFeatureComputer.class) line before the
class declaration, so that Mastodon can discover the computer at runtime.

@Plugin(type = MamutFeatureComputer.class)
public class LinkXYAngleExampleFeatureComputer implements MamutFeatureComputer
{

Specifying the output and inputs of the computer.

Let’s start immediately with the part that might feel new or strange or like dark magic. A feature computer is expected
to receive a set of parameters, such as the image, the track data, etc., and return an output, the feature it computed. But
it does not have methods to do so. Everything is done via annotated private field, annotated with a special tag. This
system comes from the SciJava core library, and is meant to simplify developing code that process things.

First, we will specify the output of this computer. This is the feature instance we will create. It will be stored in a private
field, and we add the @Parameter tag to signal Mastodon to look into this field. And we add the extra parameter type
= ItemIO.OUTPUT to signal that this is the output that Mastodon should take after computation.

Thanks to SciJava, Mastodon will be able to read this field, even if it is private. But very importantly: for this to work,
the field must not be final. If you get a stange error related to it, this is most of the time because of this.

@Parameter(type = ItemIO.OUTPUT)
private LinkXYAngleExampleFeature feature;

Second, we can declare the inputs we need in the exact same way. Mastodon will inspect the class and automatically set
the input fields you declared with the adequate values. Of course, you have a limited choice in the list of fields you can
add to your computer, but they should cover all cases. Our simple example does not need anything, so there is nothing
there. The list of possible fields is documented elsewhere.

The computer interface methods.

The FeatureComputer interface has only two methods.

/*
* In this method, the actual feature instance is typically instantiated,
* without any values.
*/
@Override
public void createOutput()
{

feature = new LinkXYAngleExampleFeature();
}

/*
* This method is called after '#createOuput()'. This is where the
* computation logic should happen, storing the computed values in the
* feature instance. In our simple case, we have nothing to do.
*/
@Override

(continues on next page)

112 Chapter 1. Table of content.

https://github.com/mastodon-sc/mastodon/blob/master/src/main/java/org/mastodon/mamut/feature/MamutFeatureComputer.java

Mastodon

(continued from previous page)

public void run()
{}

That’s it! With this, a new feature should appear in the feature computation dialog. If you check it and trigger a
computation, the new feature will appear and be usable throughout Mastodon.

1.19.4 The results.

If you compile this repository and drop it in Fiji, the feature should automatically appear in Mastodon. First in the
feature computation dialog:

And after clicking on the compute button, the values will be listed in the data table:

1.19. Custom simple numerical features in Mastodon. 113

Mastodon

The feature values can be used in a color mode to follow cell motion direction over time.

114 Chapter 1. Table of content.

Mastodon

And in the C.elegans dataset, it looks like this:

1.19. Custom simple numerical features in Mastodon. 115

Mastodon

Because in this case the values are computed on the fly, the resulting link color will be updated live when you move a
spot around, as examplified in the video below.

116 Chapter 1. Table of content.

Mastodon

1.20 Mastodon numerical features.

This chapter describes how the feature values currently available in Mastodon are calculated. We also gives information
about their dimension, units, etc.

1.20.1 Feature dimensions.

In Mastodon, feature values are expressed when possible in physical units. Each feature projection as a dimension (in
the physics meaning) from which we compute the units of the values. For instance, if a feature value as the dimension
LENGTH and the spatial units is m, then the values of this feature will be in m. Mastodon only has physical units for
space. For time, the frame interval is always equal to the dummy 1 frame. This is why you will find all units involving
time expressed in frames. Each feature projection has a dimension, and the features report what are the dimension of
their projections in the feature computation dialog. The table below lists all the feature dimensions currently supported
in Mastodon, and give examples of the derived units when the spatial units are m.

Di-
men-
sion

NameEx-
am-
ple
units

Description

NONE None ø Used for dimensionless quantities, such as frame position, number of things, etc
LENGTH Lengthµm For quantities about the length of objects. For instance radius or distance between objects.
POSITIONPo-

si-
tion

µm Dimension for feature that report a position. Different from LENGTH so that for objects with
small lengths at large positions, quantities are plotted separately.

TIME Time frame For quantities that report a delay, a duration or the timing of an event. Because Mastodon
does not deal with physical units for time, quantities formed with the time dimension always
use the frame unit.

VELOCITYVe-
loc-
ity

µm/frameFor quantities that report a speed or a velocity.

RATE Rate /frame For quantities that report a change per units of time.
ANGLE An-

gle
Ra-
di-
ans

Measures of angles. In Mastodon, all angles are in radians.

STRING NA ø For non-numeric features.
INTENSITYIn-

ten-
sity

Counts For quantities based on pixel values. For instance the mean intensity within a spot.

INTENSITY_SQUAREDIntensity2Counts2For quantities based on pixel intensity squared. For instance the variance of the mean
within a spot.

QUALITY Qual-
ity

ø This dimension is used by spot detectors. There is a special feature called Detection quality,
that stores for each spot they detect automatically a measure of quality or confidence in their
detection.

COST Cost ø This dimension is used by spot linking algorithms. There is a special feature called Link
cost used in the estimation phase. It stores for each link the cost that the linker computes
for it in the estimation phase. These costs are then used in the association phase to retrieve
the best set of links.

1.20. Mastodon numerical features. 117

Mastodon

1.20.2 Spot features.

Spot intensity.

This feature has six projections per channel:

• Mean

• Std

• Min

• Max

• Median

• Sum

These 6 projections are multiplied by the number of channels or sources in the image. You will find the projection
names appended by ch 1, ch 2, etc, as exemplified below on an image with one channel.

The values are floating point numbers, with the dimension INTENSITY. These projections give the mean, max, min, . . .
intensity at over all the pixels inside the spot ellipsoid. Like all features related to measuring pixel intensity, they take
a long time to compute over large models.

1.20.3 Spot center intensity.

Computes the intensity at the center of spots by taking the mean of pixel intensity weigthted by a gaussian. The gaussian
weights are centered on the spot, and have a sigma value equal to the minimal radius of the ellipsoid divided by 2. The
image below illustrates how these weights look like inside spots and what pixels contribute the average reported by this
feature.

118 Chapter 1. Table of content.

Mastodon

1.20.4 Spot quick mean.

This feature compute the mean intensity of the pixel inside spots using the highest level in the scale pyramid (lowest
resolution) to speedup calculation. It exists to offer a quiker way of reporting spot intensity for large models when
multiple resolution level exist in the source image. It is recommended to use the ‘Spot intensity’ feature described
above when the best accuracy is required

1.20. Mastodon numerical features. 119

Mastodon

1.20.5 Other spot features.

Fea-
ture
name

Pro-
jec-
tions

Description

Spot
frame

idem The spot frame.

Spot
N
links

idem The total number of links, incoming and outgoing, of the spot.

Spot
posi-
tion

X &
Y &
Z

The spot center position, in physical units.

Spot
radius

idem The spot radius in physical units. For spots that are ellipsoids, returns a radius using the geometric
mean of the spot ellipsoid radiuses. This approximation is such that the sphere with the reported
radius and the spot ellipsoid have the same volume.

Spot
track
ID

idem The ID of the track the spot belongs to. Track IDs are positive integer numbers starting from 0.

1.20.6 Link features.

Fea-
ture
name

Projec-
tions

Description

Link
target
IDs

Source spot
id & Target
spot id

Stores the IDs of the two spots the link connects to. In Mastodon, the links are oriented:
the source and target are not equivalent. By convention in Mastodon, the source spot is
always the first in time, and the target the last in time.

Link
dis-
place-
ment

idem The distance between the source and target spots of the links, in physical units.

Link
veloc-
ity

idem The velocity at the time of the link. It is calculated as the link displacement divided by the
frame interval between the source and target spots (in frame units).

1.20.7 Track features.

’Track’ is the vocable we use in Mastodon for the weakly connected components of the graph. A track is made of all
the links and spots that can be reached by jumping across links in any direction. In a lineage, a track corresponds to a
single cell and all its daughters, grand-daughters, etc . Track features are value that are defined for a whole track. An
example would be the number of spots in a track. In Mastodon, there is no special place to store track feature values.
Track feature values are stored in the spots of the tracks, and listed in spot features. By convention, their name starts
with Track and spot features starts with Spot.

Feature name Projections Description
Track N spots idem The number of spots in a track.

120 Chapter 1. Table of content.

Mastodon

1.20.8 Branch-spot features.

Because branch-spots link to spots in the core graph, the branch-spot features all relate to the hierarchy or neighborhood
in the branch-graph.

Fea-
ture
name

Pro-
jec-
tions

Description

Branch
N suc-
ces-
sors

idem Reports the number of successors of a branch spot. That is: how many branches emerge from this
branch-spot. The branch-spot of a cell that divides will have a value of 2 for this feature. The end
of a track will have a value of 0. The beginning of a track, 1.

Branch
depth

idem Report the hierarchy level of a branch. The hierarchy of a branch is how many ancestors a branch
has. For instance, the first branch of a track has a level of 0. After one cell division, the two
daughter branches have a level of 1, etc. This feature value is used to build the hierarchy graph.

1.20.9 Branch link features.

The branch-links represent a full branch from start to finish. Their features relate mainly to the branch size and extension
in time.

Feature
name

Pro-
jec-
tions

Description

Branch N
Spots

idem The number of spots in a branch. The count does not include the spots at the beginning
of the branch, but includes the last one. This way the sum of this feature values for all the
branches of a track equals the number of spots in the track.

Branch dura-
tion and dis-
placement

Dis-
place-
ment

Measure the displacement of a branch, that is: the euclidean distance between the first and
last spot of the branch.

Du-
ra-
tion

The time difference between the first and last spot of the branch.

1.20. Mastodon numerical features. 121

Mastodon

1.21 The graph data structure of Mastodon.

The mastodon-graph Java package can be used to implement directed graphs with small memory footprint. Vertices
and edges are not stored as individual objects. Instead vertex and edge data is laid out in a primitive byte[] array and
accessed via proxy objects. This page describes some internals of the trackmate-graph package.

1.21.1 Memory layout.

Each vertex and each edge maps to a contiguous portion of a byte[] array. The size of a portion (elements) is fixed
for a particular AbstractVertex or AbstractEdge subclass. Each element starts with a fixed part that represents the
graph structure and then additional payload used by the subclass to describe some vertex attributes, etc.

There is one byte[] array that stores all vertices, and one byte[] array that stores all edges. References between
these arrays are in the form of element indices. Whether these are indices refer to elements in the vertex or in the edge
memory array is clear from the context.

Vertex layout.

The following diagram illustrates the layout of vertices in a byte[] array:

In the left-most column, element indices are shown (in blue), followed by byte indices (in grey). In the example, each
element of the AbstractVertex subclass Spot requires 57 bytes to store. The data for the i th Spot starts at byte i *
57. The fixed AbstractVertex part comprises element indices FIRST_IN_EDGE and FIRST_OUT_EDGE, occupying
4 bytes each. The remaining 49 bytes are Spot attributes.

FIRST_IN_EDGE is the element index (in the edge memory array) of the first incoming edge, i.e., an edge pointing to
this vertex. The remaining incoming edges of the same vertex are stored as a linked list in the edge memory as described
below. If this vertex does not have any incoming edges FIRST_IN_EDGE is -1.

Similarly, FIRST_OUT_EDGE is the element index of the first outgoing edge, i.e., an edge starting from this vertex. The
remaining outgoing edges of the same vertex are stored as a linked list in the edge memory as described below. If this
vertex does not have any outgoing edges FIRST_OUT_EDGE is -1.

122 Chapter 1. Table of content.

https://github.com/mastodon-sc/mastodon-graph

Mastodon

Edge layout.

The following diagram illustrates the layout of edges in a byte[] array:

In the left-most column, element indices are shown (in red), followed by byte indices (in grey). In the example,
each element of the AbstractEdge subclass Edge requires 24 bytes to store. The data for the i th Edge starts at
byte i * 24. The fixed AbstractEdge part comprises element indices SOURCE, TARGET, NEXT_SOURCE_EDGE, and
NEXT_TARGET_EDGE, occupying 4 bytes each. The remaining 8 bytes are Edge attributes.

• SOURCE is the element index (in the vertex memory array) of the vertex from which this edge starts.

• TARGET is the element index (in the vertex memory array) of the vertex to which this edge points.

• NEXT_SOURCE_EDGE is the element index (in the edge memory array) of the next outgoing edge of the source
vertex, , the next edge that has the same SOURCE. If there is no such edge then NEXT_SOURCE_EDGE is -1.

• NEXT_TARGET_EDGE is the element index (in the edge memory array) of the next incoming edge of the target
vertex, , the next edge that has the same TARGET. If there is no such edge then NEXT_TARGET_EDGE is -1.

1.21. The graph data structure of Mastodon. 123

Mastodon

Example

Consider the following example graph comprising vertices A, B, C, D, E and edges a, b, c, d.

This is laid out in memory as follows

The links between vertex B and it’s adjacent edges a, b, c have been highlighted. Let’s look at that in more detail:
Vertex B is stored at element index 1 in the vertex memory array. B has one incoming edge a. The edge a is stored at

124 Chapter 1. Table of content.

Mastodon

element index 0 in the edge memory array. Therefore the FIRST_IN_EDGE field of B is 0. Apart from a, the vertex
B has no further incoming edges. Therefore, the NEXT_TARGET_EDGE field of a is -1, i.e., the list of edges entering B
terminates here.

B has two outgoing edges b, c. The edge b is stored at element index 1 in the edge memory array. Therefore the
FIRST_OUT_EDGE field of B is 1. The next outgoing edge of B is c which is stored at element index 2. There-
fore, the NEXT_SOURCE_EDGE field of b is 2. After c, the vertex B has no further outgoing edges. Therefore, the
NEXT_SOURCE_EDGE field of c is -1, i.e., the list of edges leaving B terminates here.

Below is the same memory layout again, this time highlighting the references from edges a, b, c back to the vertex
memory array.

For example, edge c is leaving vertex B (index 1) and entering vertex D (index 3). Therefore the SOURCE field of c is 1,
and the TARGET field of c is 3.

1.21. The graph data structure of Mastodon. 125

Mastodon

1.21.2 Free-list of unallocated elements.

The vertex and edge memory arrays can only ever grow. When elements are released, they are simply marked as free
for re-use. Assume that in the above example vertex D is deleted, as well as it’s adjacent edges c, d, leaving this:

After removing c, d, D the memory layout looks like this:

The element 3 in the vertex memory array as well as elements 2 and 3 in the edge memory array have been marked
as free. This is done by putting the magic number “-2” into the first 4 bytes of the element. In vertices and edges the
first 4 bytes are always occupied by a (positive) index or a 1 index list terminator. Therefore, occupied and free blocks
can not be confused. The next 4 bytes of a freed element are the index of the next freed element in the (same) memory
array, or -1 if there is no next freed element. Each memory array remembers the index free of the first freed element.

126 Chapter 1. Table of content.

Mastodon

Newly freed elements are enqueued at free, that is, at the head of the free-list. So in the above example, edge element
2 was freed first, followed by edge element 3.

The next edge element will be allocated at head of the free-list and the free index move to the next element. For
example, assume that a new edge is created from B to E:

If free is -1, then no more freed elements are available and the underlying memory array has to grow to fit newly
added elements.

1.22 Containment in Convex Polytopes using k-D trees.

Several important features of Mastodon rely on the fast retrieval of data items (spots and links) close to specific 3D
positions. For instance we need to do so when you move the mouse close to the drawing of a spot in a view, to retrieve
the spot in question. Or to determine what spots must to be painted in a BDV view, depending on the zoom level,
position, rotation and field of view. There exists several well established algorithms and techniques to do that, in the
case where the bounding-box in which we need to retrieve data items is a 3D rectangle aligned with the X, Y, Z axes
of the dataset.

In our case it is not. In BDV you can rotate the view around an arbitrary angle. The XY view plane does not match an
orthogonal plane of the dataset. Also the planes that make the bounds of the field of view are not aligned with these
axes. In our case, the field of view is a Convex Polytope. It is a portion of 3D space delimited by a set of planes. Think
of an ideal diamond. Each facet of the diamond would be one of the planes. The interior of the diamond would be the
convex polytope. Our goal is to know what are the points that are inside this volume so that we can paint them without
losing time painting the ones not in the field of view.

At the time of the development of Mastodon, there was no published algorithm for the fast retrieval of points in a convex

1.22. Containment in Convex Polytopes using k-D trees. 127

https://en.wikipedia.org/wiki/Convex_polytope

Mastodon

polytope. Tobias derived such an algorithm in 2016, and it is detailed in this chapter. To the best of our knowledge this
is unpublished:

Containment in Convex Polytopes using kD trees

1.23 Scripting functions

This section documents only the main scripting functions of Mastodon. They are grouped in three main classes listed
below. See the scripting tutorial to learn how to script Mastodon in Fiji.

1.23.1 Mamut

public class Mamut
Main gateway for scripting Mastodon.

This should be the entry point to create a new project or open an existing one via the open(String) and
newProject(String) static methods. Once an instance is obtained this way, a Mastodon project can be ma-
nipulated with the instance methods.

The gateways used in scripting are called Mamut and TrackMate. We chose these names to underly that this
application offer functionalities that are similar to that of the MaMuT and TrackMate software, but improved.
Nonetheless, all the code used is from Mastodon and allows only dealing with Mastodon projects.

Author
Jean-Yves Tinevez

Static methods

These methods need to be called on the class object org.mastodon.mamut.Mamut iself. They return an instance that
can be used to manipulate the associated Mastodon project.

newProject

public static final Mamut newProject(String bdvFile, Context context)
Creates a new Mastodon project analyzing the specified image data.

Parameters

• bdvFile – a path to a BDV XML file. It matters not whether the image data is stored locally
or remotely.

• context – an existing, non-null Context instance to use to open the project.

Throws

• IOException – when an error occurs trying to locate and open the file.

• SpimDataException – when an error occurs trying to open the image data.

• FormatException – when an error occurs with the image file format.

Returns
a new Mamut instance.

128 Chapter 1. Table of content.

../../../../partA/scripting_mastodon.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/io/IOException.html

Mastodon

newProject

public static final Mamut newProject(String bdvFile)
Creates a new Mastodon project analyzing the specified image data.

A new Context is created along this call.

Parameters

• bdvFile – a path to a BDV XML file. It matters not whether the image data is stored locally
or remotely.

Throws

• IOException – when an error occurs trying to locate and open the file.

• SpimDataException – when an error occurs trying to open the image data.

• FormatException – when an error occurs with the image file format.

Returns
a new Mamut instance.

open

public static final Mamut open(String mamutProject)
Opens an existing Mastodon project and returns a Mamut instance that can manipulate it.

A new Context is created along this call.

Parameters

• mamutProject – the path to the Mastodon file.

Throws

• IOException – when an error occurs trying to locate and open the file.

• SpimDataException – when an error occurs trying to open the image data.

• FormatException – when an error occurs with the image file format.

Returns
a new Mamut instance.

open

public static final Mamut open(String mamutProject, Context context)
Opens an existing Mastodon project and returns a Mamut instance that can manipulate it.

Parameters

• mamutProject – the path to the Mastodon file.

• context – an existing, non-null Context instance to use to open the project.

Throws

• IOException – when an error occurs trying to locate and open the file.

• SpimDataException – when an error occurs trying to open the image data.

1.23. Scripting functions 129

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/io/IOException.html

Mastodon

• FormatException – when an error occurs with the image file format.

Returns
a new Mamut instance.

Methods

These methods manipulate a Mastodon project using an instance returned by the static methods above.

clear

public void clear()
Clears the content of the data model. Can be undone.

computeFeatures

public void computeFeatures(String... featureKeys)
Computes the specified features.

Parameters

• featureKeys – the names of the feature computer to use for computation. It matters not
whether the feature is for spots, links, . . .

computeFeatures

public void computeFeatures(boolean forceComputeAll, String... featureKeys)
Computes the specified features, possible forcing recomputation for all data items, regardless of whether they
are in sync or not.

Parameters

• forceComputeAll – if true, will force recomputation for all data items. If false, feature
values that are in sync won’t be recomputed.

• featureKeys – the names of the feature computer to use for computation. It matters not
whether the feature is for spots, links, . . .

createTag

public void createTag(String tagSetName, String... labels)
Creates a new tag-set and several tags for this tag-set.

Parameters

• tagSetName – the tag-set name.

• labels – the list of labels to create in this tag-set.

130 Chapter 1. Table of content.

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Mastodon

createTrackMate

public TrackMateProxy createTrackMate()
Creates and returns a new TrackMateProxy instance. This instance can then be used to configure tracking on
the image analyzed in this current Mamut instance.

It is perfectly possible to create and configure separately several TrackMateProxy instances. Tracking results
will be combined depending on the instances configuration.

Returns
a new TrackMateProxy instance.

deleteSelection

public void deleteSelection()
Deletes all the data items (spots and tracks) currently in the selection.

detect

public void detect(double radius, double threshold)
Performs detection of spots in the image data with the default detection algorithm (the DoG detector).

Parameters

• radius – the radius of spots to detect, in the physical units of the image data.

• threshold – the threshold on quality of detection below which to reject detected spots.

echo

public void echo()
Prints the content of the data model as two tables as text in the logger output.

echo

public void echo(int nLines)
Prints the first N data items of the content of the data model as two tables as text in the logger output.

Parameters

• nLines – the number of data items to print.

1.23. Scripting functions 131

Mastodon

getLogger

public Logger getLogger()
Returns the logger instance to use to send messages and errors.

Returns
the logger instance.

getModel

public Model getModel()
Returns the data model manipulated by this Mamut instance.

Returns
the data model.

getSelectionModel

public SelectionModel<Spot, Link> getSelectionModel()
Returns the selection model manipulated by this Mamut instance.

Returns
the selection model.

getWindowManager

public WindowManager getWindowManager()
Returns the WindowManager gateway used to create views of the data used in this Mamut instance.

Returns
the WindowManager gateway.

info

public void info()
Prints a summary information to the logger output.

infoFeatures

public void infoFeatures()
Prints summary information on the feature computers known to Mastodon to the logger output.

132 Chapter 1. Table of content.

Mastodon

infoTags

public void infoTags()
Prints summary information on the tag-sets and tags currently present in the current Mastodon project.

link

public void link(double maxLinkingDistance, int maxFrameGap)
Performs linking of existing spots using the default linking algorithm (the Simple LAP linker).

Parameters

• maxLinkingDistance – the max linking distance (in physical unit) beyond which to forbid
linking.

• maxFrameGap – the max difference in frames for bridging gaps (missed detections).

redo

public void redo()
Redo the last changes. Can be called several times.

resetSelection

public void resetSelection()
Clears the current selection.

save

public boolean save()
Saves the Mastodon project of this instance to a Mastodon file.

This method will return an error if a Mastodon file for the project has not been specified a first time with the
saveAs(String) method.

Returns
true if saving happened without errors. Otherwise an error message is sent to the Logger
instance.

saveAs

public boolean saveAs(String mastodonFile)
Saves the Mastodon project of this instance to a new Mastodon file (it is recommended to use the .mastodon
file extension).

The file specified will be reused for every following call to the save() method.

Parameters

• mastodonFile – a path to a writable file.

1.23. Scripting functions 133

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Mastodon

Returns
true if saving happened without errors. Otherwise an error message is sent to the Logger
instance.

select

public void select(String expression)
Sets the current selection from a selection creator expression.

Such an expression can be:

mamut.select("vertexFeature('Track N spots') < 10")

Check the selection creator tutorial to learn how to build such expressions. An error message is sent to the logger
is there is a problem with the evaluation of the expression.

Parameters

• expression – a selection creator expression.

setLogger

public void setLogger(Logger logger)
Sets the logger instance to use to send messages and errors.

Parameters

• logger – a logger instance.

setTagColor

public void setTagColor(String tagSetName, String label, int R, int G, int B)
Sets the color associated with a tag in a tag-set. The color is specified as a RGB triplet from 0 to 255.

Parameters

• tagSetName – the name of the tag-set containing the target tag.

• label – the tag to modify the color of.

• R – the red value of the RGB triplet.

• G – the green value of the RGB triplet.

• B – the blue value of the RGB triplet.

134 Chapter 1. Table of content.

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
../../../../partA/selection_creator.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Mastodon

tagSelectionWith

public void tagSelectionWith(String tagSetName, String label)
Assigns the specified tag to the data items currently in the selection.

Parameters

• tagSetName – the name of the tag-set to use.

• label – the name of the tag in the tag-set to use.

undo

public void undo()
Undo the last changes. Can be called several times.

1.23.2 TrackMateProxy

public class TrackMateProxy
The tracking gateway used in scripting to configure and execute tracking in Mastodon scripts.

Author
Jean-Yves Tinevez

Methods

info

public void info()
Prints the current tracking configuration.

infoDetectors

public void infoDetectors()
Prints information on the collection of detectors currently usable in Mastodon.

infoLinkers

public void infoLinkers()
Prints information on the collection of linkers currently usable in Mastodon.

1.23. Scripting functions 135

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Mastodon

resetDetectorSettings

public void resetDetectorSettings()
Resets the detection settings to their default values.

resetLinkerSettings

public void resetLinkerSettings()
Resets the linking settings to their default values.

run

public boolean run()
Executes the tracking with current configuration.

Returns
true if tracking completed successful. An error message will be printed otherwise.

setDetectorSetting

public void setDetectorSetting(String key, Object value)
Configures one parameter of the current detector. The parameter key and value must be valid for the detector set
with useDetector(String), as shown in infoDetectors().

Parameters

• key – the key of the parameter.

• value – the value to set for this parameter.

setLinkerSetting

public void setLinkerSetting(String key, Object value)
Configures one parameter of the current link. The parameter key and value must be valid for the linkset with
useLinker(String), as shown in infoLinkers()).

Parameters

• key – the key of the parameter.

• value – the value to set for this parameter.

136 Chapter 1. Table of content.

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Mastodon

useDetector

public void useDetector(String detector)
Configures this tracking session to use the specified detector. Prints an error message if the name is unknown.

Parameters

• detector – the name of the detector, as returned in infoDetectors().

useLinker

public void useLinker(String linker)
Configures this tracking session to use the specified linker. Prints an error message if the name is unknown.

Parameters

• linker – the name of the linker, as returned in infoLinkers().

1.23.3 WindowManager

public class WindowManager
Main GUI class for the Mastodon Mamut application.

It controls the creation of new views, and maintain a list of currently opened views. It has a
getProjectManager() instance that can be used to open or create Mastodon projects. It has also the main
app-model for the session.

Author
Tobias Pietzsch, Jean-Yves Tinevez

Methods

closeAllWindows

public void closeAllWindows()
Close all opened views and dialogs.

computeFeatures

public void computeFeatures()
Displays the feature computation dialog.

1.23. Scripting functions 137

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Mastodon

createBigDataViewer

public MamutViewBdv createBigDataViewer()
Creates and displays a new BDV view, with default display settings.

createBigDataViewer

public MamutViewBdv createBigDataViewer(Map<String, Object> guiState)
Creates and displays a new BDV view, using a map to specify the display settings.

The display settings are specified as a map of strings to objects. The accepted key and value types are:

• 'FramePosition'→ an int[] array of 4 elements: x, y, width and height.

• 'LockGroupId'→ an integer that specifies the lock group id.

• 'SettingsPanelVisible'→ a boolean that specifies whether the settings panel is visible on this view.

• 'BdvState'→ a XML Element that specifies the BDV window state. See ViewerPanel.stateToXml()
and ViewerPanel.stateFromXml(org.jdom2.Element) for more information.

• 'BdvTransform'→ an AffineTransform3D that specifies the view point.

• 'NoColoring'→ a boolean; if true, the feature or tag coloring will be ignored.

• 'TagSet'→ a string specifying the name of the tag-set to use for coloring. If not null, the coloring will
be done using the tag-set.

• 'FeatureColorMode' → a String specifying the name of the feature color mode to use for coloring. If
not null, the coloring will be done using the feature color mode.

• 'ColorbarVisible'→ a boolean specifying whether the colorbar is visible for tag-set and feature-based
coloring.

• 'ColorbarPosition'→ a Position specifying the position of the colorbar.

Parameters

• guiState – the map of settings.

createBranchBigDataViewer

public MamutBranchViewBdv createBranchBigDataViewer()
Creates and displays a new Branch-BDV view, with default display settings. The branch version of this view
displays the branch graph.

createBranchBigDataViewer

public MamutBranchViewBdv createBranchBigDataViewer(Map<String, Object> guiState)
Creates and displays a new Branch-BDV view, using a map to specify the display settings.

Parameters

• guiState – the settings map.

See also: .createBigDataViewer(Map)

138 Chapter 1. Table of content.

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Mastodon

createBranchTrackScheme

public MamutBranchViewTrackScheme createBranchTrackScheme()
Creates and displays a new Branch-TrackScheme view, with default display settings. The branch version of this
view displays the branch graph.

createBranchTrackScheme

public MamutBranchViewTrackScheme createBranchTrackScheme(Map<String, Object> guiState)
Creates and displays a new Branch-TrackScheme view, using a map to specify the display settings.

Parameters

• guiState – the settings map.

See also: .createTrackScheme(Map)

createGrapher

public MamutViewGrapher createGrapher()
Creates and displays a new Grapher view, with default display settings.

createGrapher

public MamutViewGrapher createGrapher(Map<String, Object> guiState)
Creates and displays a new Grapher view, using a map to specify the display settings.

The display settings are specified as a map of strings to objects. The accepted key and value types are:

• 'FramePosition'→ an int[] array of 4 elements: x, y, width and height.

• 'LockGroupId'→ an integer that specifies the lock group id.

• 'SettingsPanelVisible'→ a boolean that specifies whether the settings panel is visible on this view.

• 'NoColoring'→ a boolean; if true, the feature or tag coloring will be ignored.

• 'TagSet'→ a string specifying the name of the tag-set to use for coloring. If not null, the coloring will
be done using the tag-set.

• 'FeatureColorMode'→ a @link String specifying the name of the feature color mode to use for coloring.
If not null, the coloring will be done using the feature color mode.

• 'ColorbarVisible'→ a boolean specifying whether the colorbar is visible for tag-set and feature-based
coloring.

• 'ColorbarPosition'→ a Position specifying the position of the colorbar.

• 'GrapherTransform'→ a org.mastodon.views.grapher.datagraph.ScreenTransform specify-
ing the region to initially zoom on the XY plot.

Parameters

• guiState – the map of settings.

1.23. Scripting functions 139

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Mastodon

createHierarchyTrackScheme

public MamutBranchViewTrackScheme createHierarchyTrackScheme()
Creates and displays a new Hierarchy-TrackScheme view, with default display settings.

createHierarchyTrackScheme

public MamutBranchViewTrackScheme createHierarchyTrackScheme(Map<String, Object> guiState)
Creates and displays a new Hierarchy-TrackScheme view, using a map to specify the display settings.

Parameters

• guiState – the settings map.

See also: .createTrackScheme(Map)

createTable

public MamutViewTable createTable(Map<String, Object> guiState)
Creates and displays a new Table or a Selection Table view, using a map to specify the display settings.

The display settings are specified as a map of strings to objects. The accepted key and value types are:

• 'TableSelectionOnly' → a boolean specifying whether the table to create will be a selection table of
a full table. If true, the table will only display the current content of the selection, and will listen to its
changes. If false, the table will display the full graph content, listen to its changes, and will be able to
edit the selection.

• 'FramePosition'→ an int[] array of 4 elements: x, y, width and height.

• 'LockGroupId'→ an integer that specifies the lock group id.

• 'SettingsPanelVisible'→ a boolean that specifies whether the settings panel is visible on this view.

• 'NoColoring'→ a boolean; if true, the feature or tag coloring will be ignored.

• 'TagSet'→ a string specifying the name of the tag-set to use for coloring. If not null, the coloring will
be done using the tag-set.

• 'FeatureColorMode'→ a @link String specifying the name of the feature color mode to use for coloring.
If not null, the coloring will be done using the feature color mode.

• 'ColorbarVisible'→ a boolean specifying whether the colorbar is visible for tag-set and feature-based
coloring.

• 'ColorbarPosition'→ a Position specifying the position of the colorbar.

Parameters

• guiState – the map of settings.

140 Chapter 1. Table of content.

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Mastodon

createTable

public MamutViewTable createTable(boolean selectionOnly)
Creates and display a new Table or Selection Table view with default settings.

Parameters

• selectionOnly – if true, the table will only display the current content of the selection,
and will listen to its changes. If false, the table will display the full graph content, listen to
its changes, and will be able to edit the selection.

Returns
a new table view.

createTrackScheme

public MamutViewTrackScheme createTrackScheme()
Creates and displays a new TrackScheme view, with default display settings.

createTrackScheme

public MamutViewTrackScheme createTrackScheme(Map<String, Object> guiState)
Creates and displays a new BDV view, using a map to specify the display settings.

The display settings are specified as a map of strings to objects. The accepted key and value types are:

• 'FramePosition'→ an int[] array of 4 elements: x, y, width and height.

• 'LockGroupId'→ an integer that specifies the lock group id.

• 'SettingsPanelVisible'→ a boolean that specifies whether the settings panel is visible on this view.

• 'TrackSchemeTransform'→ a ScreenTransform that defines the starting view zone in TrackScheme.

• 'NoColoring'→ a boolean; if true, the feature or tag coloring will be ignored.

• 'TagSet'→ a string specifying the name of the tag-set to use for coloring. If not null, the coloring will
be done using the tag-set.

• 'FeatureColorMode'→ a @link String specifying the name of the feature color mode to use for coloring.
If not null, the coloring will be done using the feature color mode.

• 'ColorbarVisible'→ a boolean specifying whether the colorbar is visible for tag-set and feature-based
coloring.

• 'ColorbarPosition'→ a Position specifying the position of the colorbar.

Parameters

• guiState – the map of settings.

1.23. Scripting functions 141

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Mastodon

editTagSets

public void editTagSets()
Displays the tag-set editor dialog.

forEachBdvView

public void forEachBdvView(Consumer<? super MamutViewBdv> action)
Executes the specified action for all the currently opened BDV views.

Parameters

• action – the action to execute.

forEachBranchTrackSchemeView

public void forEachBranchTrackSchemeView(Consumer<? super MamutBranchViewTrackScheme> action)
Executes the specified action for all the currently opened Branch-TrackScheme views.

Parameters

• action – the action to execute.

forEachBranchView

public void forEachBranchView(Consumer<? super MamutBranchView<?, ?, ?>> action)
Executes the specified action for all the currently opened branch-graph views.

Parameters

• action – the action to execute.

forEachGrapherView

public void forEachGrapherView(Consumer<? super MamutViewGrapher> action)
Executes the specified action for all the currently opened Grapher views.

Parameters

• action – the action to execute.

forEachTableView

public void forEachTableView(Consumer<? super MamutViewTable> action)
Executes the specified action for all the currently opened Table views.

Parameters

• action – the action to execute.

142 Chapter 1. Table of content.

http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

Mastodon

forEachTrackSchemeView

public void forEachTrackSchemeView(Consumer<? super MamutViewTrackScheme> action)
Executes the specified action for all the currently opened TrackScheme views.

Parameters

• action – the action to execute.

forEachView

public void forEachView(Consumer<? super MamutView<?, ?, ?>> action)
Executes the specified action for all the currently opened views.

Parameters

• action – the action to execute.

getBdvWindows

public List<MamutViewBdv> getBdvWindows()
Exposes currently open BigDataViewer windows.

Returns
a List of MamutViewBdv.

openOnlineDocumentation

public void openOnlineDocumentation()
Opens the online documentation in a browser window.

1.23. Scripting functions 143

http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html

Mastodon

144 Chapter 1. Table of content.

CHAPTER

TWO

DOCUMENTATION TOOLS.

• search

145

Mastodon

146 Chapter 2. Documentation tools.

INDEX

C
clear() (Java method), 130
closeAllWindows() (Java method), 137
computeFeatures() (Java method), 137
computeFeatures(boolean, String) (Java method),

130
computeFeatures(String) (Java method), 130
createBigDataViewer() (Java method), 138
createBigDataViewer(Map) (Java method), 138
createBranchBigDataViewer() (Java method), 138
createBranchBigDataViewer(Map) (Java method),

138
createBranchTrackScheme() (Java method), 139
createBranchTrackScheme(Map) (Java method), 139
createGrapher() (Java method), 139
createGrapher(Map) (Java method), 139
createHierarchyTrackScheme() (Java method), 140
createHierarchyTrackScheme(Map) (Java method),

140
createTable(boolean) (Java method), 141
createTable(Map) (Java method), 140
createTag(String, String) (Java method), 130
createTrackMate() (Java method), 131
createTrackScheme() (Java method), 141
createTrackScheme(Map) (Java method), 141

D
deleteSelection() (Java method), 131
detect(double, double) (Java method), 131

E
echo() (Java method), 131
echo(int) (Java method), 131
editTagSets() (Java method), 142

F
forEachBdvView(Consumer) (Java method), 142
forEachBranchTrackSchemeView(Consumer) (Java

method), 142
forEachBranchView(Consumer) (Java method), 142
forEachGrapherView(Consumer) (Java method), 142
forEachTableView(Consumer) (Java method), 142

forEachTrackSchemeView(Consumer) (Java method),
143

forEachView(Consumer) (Java method), 143

G
getBdvWindows() (Java method), 143
getLogger() (Java method), 132
getModel() (Java method), 132
getSelectionModel() (Java method), 132
getWindowManager() (Java method), 132

I
info() (Java method), 132, 135
infoDetectors() (Java method), 135
infoFeatures() (Java method), 132
infoLinkers() (Java method), 135
infoTags() (Java method), 133

L
link(double, int) (Java method), 133

M
Mamut (Java class), 128

N
newProject(String) (Java method), 129
newProject(String, Context) (Java method), 128

O
open(String) (Java method), 129
open(String, Context) (Java method), 129
openOnlineDocumentation() (Java method), 143
org.mastodon.mamut (package), 128

R
redo() (Java method), 133
resetDetectorSettings() (Java method), 136
resetLinkerSettings() (Java method), 136
resetSelection() (Java method), 133
run() (Java method), 136

147

Mastodon

S
save() (Java method), 133
saveAs(String) (Java method), 133
select(String) (Java method), 134
setDetectorSetting(String, Object) (Java

method), 136
setLinkerSetting(String, Object) (Java method),

136
setLogger(Logger) (Java method), 134
setTagColor(String, String, int, int, int)

(Java method), 134

T
tagSelectionWith(String, String) (Java method),

135
TrackMateProxy (Java class), 135

U
undo() (Java method), 135
useDetector(String) (Java method), 137
useLinker(String) (Java method), 137

W
WindowManager (Java class), 137

148 Index

	Table of content.
	Getting started with Mastodon. Automated tracking.
	The image data.
	Exporting your image to file format.
	Key advantages of the file format.
	The tutorial dataset.

	Getting Mastodon.
	Creating a new Mastodon project.
	Detecting cells.
	Linking cells.
	Selecting target spots for linking.
	Available linking algorithms in Mastodon.
	How to pick the right linking algorithm?
	Running the Simple LAP linker.

	Wrapping up.

	Manually editing tracks in Mastodon. TrackScheme.
	TrackScheme, the lineage view and editor.
	The focus and the spot labels.
	Moving the focus.
	Editing the spot labels.
	The order of tracks in TrackScheme.
	The focus in BDV views.

	Synchronizing several views together.
	The highlight.
	Deleting individual spots and links.
	Linking spots.
	The selection.
	Editing spots and links with the selection.
	Manually adding spots and linking them.
	Moving spots around.
	The undo/redo mechanism.
	Putting things in practice.

	Inspecting large datasets.
	Bookmarks in the BDV views.
	View modes in BDV.
	Linking several views together.
	In TrackScheme everything is animated.
	Spatial context in TrackScheme.

	Numerical features and tags. The table view.
	Tags and tag-sets.
	Creating tag-sets.
	Assigning tags to data items.
	Coloring views by tag-sets.

	Numerical features.
	Feature computation.
	Coloring views by numerical features.

	The data table views.
	The main table view.
	Sorting rows.
	The selection table.
	Feature-based coloring in table views.
	Exporting table data.

	Semi-automated tracking.
	Simple semi-automated tracking.
	Configuring the semi-automated tracker.
	Tracker behavior with existing annotations.
	Main use-cases for semi-automated tracking.
	Tracking a subset of cells.
	Stitching small track segments.
	Backtracking, branching on cell divisions.
	Sparse linking over dense spots.

	The selection creator.
	The selection creator window.
	Selection based on spot feature values.
	Let’s make errors.
	Selection with link features.
	Why are the functions called vertexFeature and edgeFeature?
	Building selection based on tags.
	Combining expressions.
	Editing the selection.
	Morphing a selection.
	Summary.
	Functions and variables.
	Morphers.

	Scripting Mastodon in Fiji.
	The required import.
	Creating a new project from a BDV file.
	Basic cell tracking.
	Configure tracking.
	Computing features.
	Selecting and editing the model.
	Tagging data items.
	Showing and configuring views.
	Undo and redo.
	Saving a Mastodon project.
	Reloading a Mastodon project.

	Moving around in the BDV views.
	Editing spots and links in the BDV views.
	Moving around in the TrackScheme views.
	Editing spots and links in the TrackScheme views.
	Shortcuts for the table views.
	Navigation through lineages in BDV and TrackScheme views.
	Setting the selection.
	Existing plugins
	Mastodon Tracking
	Mastodon Pasteur
	Mastodon Selection Creator
	Mastodon Tomancak
	Ellipsoid Fitting
	Mastodon Deep Lineage

	Mastodon Deep Lineage - a collection of plugins to analyse lineages of tracked objects in Mastodon
	Installation instructions
	Numerical Features added to Mastodon
	Spot Features
	Branch-spot features

	Lineage Tree Classification
	Parameters:
	Example:

	Label image exporter
	Example:

	Mastodon data structures.
	The data model.
	Image data.
	Tracking data, the Model class.
	The tracking data. The ModelGraph class.
	The data objects. The Spot class.
	The Link class.
	The index. The SpatioTemporalIndex and SpatialIndex classes.

	Creating custom plugins in Mastodon.
	The code template.
	The plugin class hierarchy.
	The interface to implement.
	Suggested package.
	The @Plugin annotation.

	The plugin interface methods.
	Passing the data to the plugin.
	The actual plugin logic.
	Declaring the actions to Mastodon.
	The action descriptions.
	Inserting actions in the menus of Mastodon.

	Custom simple numerical features in Mastodon.
	The versatility and verbosity of the numerical feature system in Mastodon.
	The feature class.
	The beginning.
	The role of feature projections.
	Feature specifications.
	Implementing the feature projection.
	Invalidating values.
	Returning projections.

	The feature computer class.
	The MamutFeatureComputer interface.
	Specifying the output and inputs of the computer.
	The computer interface methods.

	The results.

	Mastodon numerical features.
	Feature dimensions.
	Spot features.
	Spot intensity.

	Spot center intensity.
	Spot quick mean.
	Other spot features.
	Link features.
	Track features.
	Branch-spot features.
	Branch link features.

	The graph data structure of Mastodon.
	Memory layout.
	Vertex layout.
	Edge layout.
	Example

	Free-list of unallocated elements.

	Containment in Convex Polytopes using k-D trees.
	Scripting functions
	Mamut
	Static methods
	newProject
	newProject
	open
	open

	Methods
	clear
	computeFeatures
	computeFeatures
	createTag
	createTrackMate
	deleteSelection
	detect
	echo
	echo
	getLogger
	getModel
	getSelectionModel
	getWindowManager
	info
	infoFeatures
	infoTags
	link
	redo
	resetSelection
	save
	saveAs
	select
	setLogger
	setTagColor
	tagSelectionWith
	undo

	TrackMateProxy
	Methods
	info
	infoDetectors
	infoLinkers
	resetDetectorSettings
	resetLinkerSettings
	run
	setDetectorSetting
	setLinkerSetting
	useDetector
	useLinker

	WindowManager
	Methods
	closeAllWindows
	computeFeatures
	createBigDataViewer
	createBigDataViewer
	createBranchBigDataViewer
	createBranchBigDataViewer
	createBranchTrackScheme
	createBranchTrackScheme
	createGrapher
	createGrapher
	createHierarchyTrackScheme
	createHierarchyTrackScheme
	createTable
	createTable
	createTrackScheme
	createTrackScheme
	editTagSets
	forEachBdvView
	forEachBranchTrackSchemeView
	forEachBranchView
	forEachGrapherView
	forEachTableView
	forEachTrackSchemeView
	forEachView
	getBdvWindows
	openOnlineDocumentation

	Documentation tools.
	Index

