
9. Containment in Convex Polytopes using :-D trees.

Several important features of Mastodon rely on the fast retrieval of data items (spots and links) close
to specific 3D positions. For instance we need to do so when you move the mouse close to the drawing
of a spot in a view, to retrieve the spot in question. Or to determine what spots must to be painted
in a BDV view, depending on the zoom level, position, rotation and field of view. There exists several
well established algorithms and techniques to do that, in the case where the bounding-box in which
we need to retrieve data items is a 3D rectangle aligned with the X, Y, Z axes of the dataset.

In our case it is not. In BDV you can rotate the view around an arbitrary angle. The XY view
plane does not match an orthogonal plane of the dataset. Also the planes that make the bounds of
the field of view are not aligned with these axes. In our case, the field of view is a ’Convex Polytope’.
It is a portion of 3D space delimited by a set of planes11. Think of an ideal diamond. Each facet of the
diamond would be one of the planes. The interior of the diamond would be the convex polytope. Our
goal is to know what are the points that are inside this volume so that we can e.g. paint them without
losing time painting the ones not in the field of view.

At the time of the development of Mastodon, there was no published algorithm for the fast
retrieval of points in a convex polytope. Tobias derived such an algorithm in 2016, and it is detailed in
this chapter. To the best of our knowledge this is unpublished.

9.1. Introduction.

The problem we want to solve is the following: Given a set of points x 2 R: and a convex polytope in
R: , partition the set of points into those inside and outside the polytope.

We assume that the points are stored in a :-D tree (formally defined below). We start by deriving
an algorithm that, given a hyperplane, partitions the set of points into points in the positive and
negative half-space of the hyperplane, respectively. We then give an algorithm that, given a convex
polytope (a set of hyperplanes), partitions the set of points into points that are inside and outside the
polytope, respectively.

9.2. :-D trees.

We assume that the points are stored in a :-D tree which can be defined as follows.

Definition 1 (binary point tree) We define the set of binary trees with points x 2 R: stored in the

nodes as

T: = {?} [
n
(x, B, !,') | x 2 R: , 1  B  :, !,' 2 T:

o

where ? denotes the empty tree and B is called the spli�ing dimension.

11h�ps://en.wikipedia.org/wiki/Convex_polytope

67

https://en.wikipedia.org/wiki/Convex_polytope

Definition 2 (min and max coordinate of a tree) Let) 2 T: and 1  B  : . We define the min

coordinate in dimension 3 as

min3 ()) =
8>><
>>:
+1 if) = ?
min {G3 ,min3 (!) ,min3 (')} if) = (x, B, !,') .

We define the max coordinate in dimension 3 as

max3 ()) =
8>><
>>:
�1 if) = ?
max {G3 ,max3 (!) ,max3 (')} if) = (x, B, !,'),

where G8 denotes the 8th component of vector x.

Definition 3 (:-D tree) We define the set of :-D trees as

T:⇡ = {?} [{(x, B, !,') 2 T: | maxB (!)  xB  minB (') , !,' 2 T:⇡ } .

9.3. Sub-tree bounding boxes.

The algorithms presented in the following are all based on recursively visiting the nodes of a :-D tree
in a depth-first search. While doing this, we maintain the bounding box of all coordinates in the sub-
tree rooted in the visited node. The recursion is given in Algorithm 1. We use x[8 7! ~] to denote the
vector x with the 8th component replaced by ~.

Algorithm 1: Sub-tree bounding boxes.

Procedure visit
�
(x, B, !,') , xmin, xmax� :

if ! < ? then
visit

�
!, xmin, xmax [B 7! GB]

�

if ' < ? then
visit

�
', xmin [B 7! GB], xmax�

It is easy to show that 83, 1  3  : : max3 ())  Gmax
3 ^min3 ()) � Gmin

3 is an invariant of the
recursion in visit

�
) 2 T:⇡ , xmin, xmax [B 7! GB]

�
.

9.4. Spli�ing :-D tree by a hyperplane.

Let % = (n,<) with n 2 R: ,< 2 R denote a :-dimensional hyperplane. Point x 2 R: is on the plane
i� x · n =<; it is above the plane i� x · n � <; it is below the plane i� x · n < <.

Consider a set - of points x 2 R: . Let a bounding box of - be given by
�
xmin, xmax� such that

8x 2 - , 83, 1  3  : : Gmin
3  G3  Gmax

3 .

68

To determine whether all points in - lie above or below a hyperplane (n,<) respectively, it is
su�icient to check the bounding box corner that is furthest along the negative or positive direction of
the normal n. This is formalized in functions allAbove and allBelow in Algorithm 2.

Algorithm 2: Bounding box above or below plane.

Function allAbove
�
xmin, xmax, (n,<)

�
: 1 2 B

x := (G1, . . . , G=) , G3 =

(
Gmin
3 if =3 � 0
Gmax
3 if =3 < 0

return x · n � <

Function allBelow
�
xmin, xmax, (n,<)

�
: 1 2 B

x := (G1, . . . , G=) , G3 =

(
Gmin
3 if =3 < 0
Gmax
3 if =3 � 0

return x · n < <

It is easy to show that

• if allAbove
�
xmin, xmax, (n,<)

�
= true then all points in the bounding box

�
xmin, xmax� are above

the plane, and

• if allBelow
�
xmin, xmax, (n,<)

�
= true then all points in the bounding box

�
xmin, xmax� are below

the plane.

Given these functions we can devise an algorithm that partitions points in a :-D tree) =

(x, B, !,') 2 T:⇡ into sets � (points above the hyperplane) and ⌫ (points below the hyperplane) as
follows: Check whether x is above or below the hyperplane and add it to � or ⌫ accordingly. Deter-
mine bounding boxes for ! and ' as in Algorithm 1 and test whether these are allAbove or allBelow
the hyperplane. If so, add all points in sub-trees ! and ' to� or ⌫, respectively. Otherwise recursively
descent into ! and '.

This computation can be made more e�icient by eliminating certain checks for ! and '. For
example, assume that x is above the hyperplane. Further assume that =B � 0. Because we recursively
descended into) , we already know that the bounding box of) is not allAbove the hyperplane. This
means that the bounding box corner furthest to the negative normal direction is not above the hyper-
plane. Now, the bounding box for ! only di�ers from the bounding box of) in that Gmax

B = GB . Because
=B � 0, the bounding box corner of ! furthest to the negative normal direction will have Bth component
equal to Gmin

B . This means that the bounding box corner furthest to the negative normal direction for
! has the same coordinates as that for) . Therefore, we already know that ! is not allAbove the hyper-
plane. Consequently we can eliminate the aboveAll check for ! and recursively descent immediately.
Similar considerations can be made for other combinations of sign of =B and ! or '.

The resulting algorithm is given in Algorithm 3, where we use all ()) to denote the set of all
points in the sub-tree) .

69

Algorithm 3: Split :-D tree points on hyperplane. Given a :-D tree and a hyperplane, the
function split computes a partition of the points in the tree into sets� and ⌫ of point above
and below the hyperplane, respectively.

Function split
�
(x, B, !,') , xmin, xmax, (n,<)

�
: (�,⌫) 2 P

�
R:

�
⇥ P

�
R:

�
? := x · n � < // set ? if x is above hyperplane
@! := =B < 0 // set @! if n points towards left child
@' := =B � 0 // set @' if n points towards right child

// handle x
if ? then

(�,⌫) := ({x} ,ú)
else

(�,⌫) := (ú, {x})

// handle left child
(�,⌫) := (�,⌫) [splitSubtree

�
!, xmin, xmax [B 7! GB], (n,<) , ?,@!

�
// handle right child
(�,⌫) := (�,⌫) [splitSubtree

�
', xmin [B 7! GB], xmax, (n,<) , ?,@'

�
return (�,⌫)

Function splitSubtree
�
) , xmin, xmax, %, ?,@

�
: (�,⌫) 2 P

�
R:

�
⇥ P

�
R:

�
if ? ^ @ ^ allAbove

�
xmin, xmax, %

�
then

return (all()),ú)
else if ¬? ^ ¬@ ^ allBelow

�
xmin, xmax, %

�
then

return (ú, all()))
else

return split
�
) , xmin, xmax, %

�

9.5. Spli�ing :-D tree into Inside and Outside of a Convex Polytope.

Now assume that we are given a convex polytope C = {%1, . . . %⌘} defined by hyperplanes %8 =
�
n8 ,<8

�
such that points x 2 R: are inside C if they are above all hyperplanes %8 and outside C otherwise. We
want to partition points in a :-D tree) = (x, B, !,') 2 T:⇡ into sets � and ⌫ of points inside and
outside the polytope, respectively.

Using the same reasoning as in Section 9.4 we can devise an algorithm that partitions points in
a :-D tree) = (x, B, !,') 2 T:⇡ into sets � (points inside the polytope) and ⌫ (points outside the
polytope) as follows: Check whether x is above all hyperplanes %8 . If so, add x to �, otherwise add it
to ⌫. Determine bounding boxes for ! and ' as in Algorithm 1, and test whether these are allAbove
and allBelow all hyperplanes %8 . If the bounding box for ! (or ') is above all of the hyperplanes %8 , add
all points in the sub-tree ! (or ') to set �. If the bounding box for ! (or ') is below a single one of the
hyperplanes %8 , add all points in the sub-tree ! (or ') to set ⌫. Otherwise recursively descent into !

and '.

We can make the following considerations to make the computation more e�icient:

70

• Certain checks for individual hyperplanes can be eliminated by the same reasoning as in Sec-
tion 9.4.

• If a sub-tree is allBelow a single hyperplane, we can stop checking further hyperplanes. The
recursion can be terminated and the whole sub-tree can be added to the outside set ⌫.

• If a sub-tree is allAbove a given hyperplane, all sub-trees further down the recursion will be
allAbove this hyperplane as well. Consequently, that hyperplane can be removed from the set of
hyperplanes to consider for this branch of the recursion. If in this process the set of hyperplanes
becomes empty, recursion can be terminated and the whole sub-tree can be added to the inside
set �.

The resulting algorithm is given in Algorithm 4, where %8 =
�
n8 ,<8

�
and we use all ()) to denote

71

the set of all points in the sub-tree) .

Algorithm 4: Partition :-D tree points into interior and exterior of a polytope. Given a :-D
tree and a convex polytope, the function clip computes a partition of the points in the tree
into sets � and ⌫ of point inside and outside the polytope, respectively.

Function clip
�
(x, B, !,') , xmin, xmax, {%1, . . . , %⌘}

�
: (�,⌫) 2 P

�
R:

�
⇥ P

�
R:

�
foreach 1  8  ⌘ do

?8 := x · n8 � <8 // set ?8 if x is above hyperplane %8
@!8 := =8B < 0 // set @!8 if n8 points towards left child

@'8 := =8B � 0 // set @'8 if n8 points towards right child

p := (?1, . . . , ?⌘)
q! :=

⇣
@!1 , . . . ,@

!
⌘

⌘
q' :=

⇣
@'1 , . . . ,@

'
⌘

⌘

// handle x
if
”

8 ?8 then
(�,⌫) := ({x} ,ú)

else
(�,⌫) := (ú, {x})

// handle left child

(�,⌫) := (�,⌫) [
clipSubtree

�
!, xmin, xmax [B 7! GB], p, q!, {%1, . . . , %⌘}

�
// handle right child

(�,⌫) := (�,⌫) [
clipSubtree

�
', xmin [B 7! GB], xmax, p, q', {%1, . . . , %⌘}

�
return (�,⌫)

Function clipSubtree
�
) , xmin, xmax, p, q, {%1, . . . , %⌘}

�
: (�,⌫) 2 P

�
R:

�
⇥ P

�
R:

�
P := {%1, . . . , %⌘}

foreach 1  8  ⌘ do
if ?8 ^ @8 ^ allAbove

�
xmin, xmax, %8

�
then

P := P \ {%8}
else if ¬?8 ^ ¬@8 ^ allBelow

�
xmin, xmax, %8

�
then

return (ú, all()))

if P = ú then
return (all()),ú)

else
return clip

�
) , xmin, xmax,P

�

72

9.6. Source code availability.

Implementations of the algorithms discussed above are provided in ImgLib2 [10]. The split algorithm
for spli�ing a :-D tree by a hyperplane is implemented in SplitHyperPlaneKDTree12 in the kdtree
package. The clip algorithm for spli�ing a :-D tree into inside and outside of a convex polytope is
implemented in ClipConvexPolytopeKDTree13 in the same package.

12net.imglib2.algorithm.kdtree.SplitHyperPlaneKDTree
13net.imglib2.algorithm.kdtree.ClipConvexPolytopeKDTree

73

https://github.com/imglib/imglib2-algorithm/blob/master/src/main/java/net/imglib2/algorithm/kdtree/SplitHyperPlaneKDTree.java
https://github.com/imglib/imglib2-algorithm/blob/master/src/main/java/net/imglib2/algorithm/kdtree/ClipConvexPolytopeKDTree.java

	Using Mastodon.
	Getting started with Mastodon. Automated tracking.
	The image data.
	Exporting your image to BigDataViewer file format.
	Key advantages of the BigDataViewer file format.
	The tutorial dataset.

	Getting Mastodon.
	Creating a new Mastodon project.
	Detecting cells.
	Linking cells.
	Selecting target spots for linking.
	Available linking algorithms in Mastodon.
	How to pick the right linking algorithm?
	Running the Simple LAP linker.

	Wrapping up.

	Manually editing tracks in Mastodon. TrackScheme.
	TrackScheme, the lineage view and editor.
	The focus and the spot labels.
	Moving the focus.
	Editing the spot labels.
	The order of tracks in TrackScheme.
	The focus in BDV views.

	Synchronizing several views together.
	The highlight.
	Deleting individual spots and links.
	Linking spots together.
	The selection.
	Editing spots and links with the selection.
	Manually adding spots and linking them.
	Moving spots around.
	The undo/redo mechanism.
	Putting things in practice.

	Getting your bearings in large datasets.
	Bookmarks in the BDV views.
	View modes in BDV.
	Linking several views together.
	In TrackScheme everything is animated.
	Spatial context in TrackScheme.

	Numerical features and tags. The table view.
	Tags and tag-sets.
	Creating tag-sets.
	Assigning tags to data items.
	Coloring views by tag-sets.

	Numerical features.
	Feature computation.
	Coloring views by numerical features.

	The data table views.
	The main table view.
	Sorting rows.
	The selection table.
	Feature-based coloring in table views.
	Exporting table data.

	Semi-automated tracking.
	Simple semi-automated tracking.
	Configuring the semi-automated tracker.
	Tracker behavior with existing annotations.
	Main use-cases for semi-automated tracking.
	Tracking a subset of cells.
	Stitching small track segments.
	Backtracking, branching on cell divisions.
	Sparse linking over dense spots.

	The selection creator.

	Mastodon interoperability.
	Extending Mastodon.
	Technical information.
	Mastodon numerical features.
	Feature dimensions.
	Spot features.
	Spot gaussian-filtered intensity.
	Spot median intensity.
	Other spot features.

	Link features.
	Track features.

	The graph data structure of Mastodon.
	Memory layout.
	Vertex layout.
	Edge layout.
	Example

	Free-list of unallocated elements.

	Containment in Convex Polytopes using k-D trees.
	Introduction.
	k-D trees.
	Sub-tree bounding boxes.
	Splitting k-D tree by a hyperplane.
	Splitting k-D tree into Inside and Outside of a Convex Polytope.
	Source code availability.

